当前位置: 首页 > 如何自学 > 初中 > 七年级

七年级上册一元一次方程,一元一次方程10道及答案

  • 七年级
  • 2023-07-24

七年级上册一元一次方程?一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。(二)等式的性质 1.等式两边同时加上(或减去)同一个整式,等式仍然成立。那么,七年级上册一元一次方程?一起来了解一下吧。

初一数学上册一元一次方程题

方程简介

只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程.通常形式是ax+b=0(a,b为常数,且a≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数必须是1.一元一次方程英文是(linear

equation

in

one)编辑本段性质

等式的性质一:等式两边同时加一个数或减一同一个数,等式仍然成立.

等式的性质二:等式两边同时乘一个数或除以同一个不为0的数,等式仍然成立.

等式的性质三:等式两边同时乘方(或开方),等式仍然成立.

解方程都是依据等式的这三个性质.编辑本段一元一次方程的解

使方程左右两边相等的未知数的值叫做方程的解.

ax=b

当a≠0,b=0时,

ax=0

x=0;

当a≠0时,x=b/a.

当a=0,

b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)

当a=0,

b≠0时,方程无解

例:

(3x+1)/2-2=(3x-2)/10-(2x+3)/5

去分母(方程两边同乘各分母的最小公倍数)得,

5(3x+1)-10×2=(3x-2)-2(2x+3)

去括号得,

15x+5-20=3x-2-4x-6

移项得,

15x-3x+4x=-2-6-5+20

合并同类项得,

16x=7

系数化为1得,

x=7/16.编辑本段一元一次方程与实际问题

一元一次方程牵涉到许多的实际问题,例如

工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题.从算式到方程

列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程(equation).

1.4x=24

2.1700+150x=2450

3.0.52x-(1-0.52)x=80

上面各方程都只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear

equation

with

one

unknown).

分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.编辑本段一元一次方程的学习实践

在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题

一元一次方程含

工程问题

种植问题

相遇问题(路程问题)

牛吃草问题

等等编辑本段等式

等式两边乘同一个数,或除以同一个不为0的数,结果仍然相等.

5x-4x=-25-20

像上面那样举稿宽把等式的一边的某项变号后移到另一边,叫做移项.编辑本段配套问题解一元一次方程的步骤

一般解法:

1.去分母:在方程两边都乘以各分母的最小公倍数;

2.去括号:先去小括号,再去中括号,最后去大括号;

3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

4.合并同类项:把方程化成ax=b(a≠0)的形式;

5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

同解方程

如正亮果两个方程的解相同,那么这两个方程叫做同解方程.

方程的同解原理:

⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程.

⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程.

做一元一次方程应用题的重要方法:

⒈认真审题

⒉分析已知和未知的量

⒊找一个等量关系

⒋设未知数

⒌列方程

⒍解方程

⒎检验

⒏写出答案编辑本段教学设计示例教敬孝学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤,并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯.教学重点和难点

一元一次方程解简单的应用题的方法和步骤.课堂教学过程设计

一、从学生原有的认知结构提出问题:在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1

某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2

某面粉仓库存放的面粉运出

15%后,还剩余42

500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42

500,所以

x=50

000.

答:原来有

50

000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈.

最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

七年级上册数学一元一次方程计算题

初一上学期数学用一元一次方程解决问题

审 设 列 三个步骤 最好列出数量关系 在演草本上列个表格 再把数字带进数量关系式里 就做出来了

初三数学用一元一次方程解决问题

(1200-50X)(30+X)=28000

36000-1500X+1200X-50X^2=28000

50X^2+300X=8000

X^2+6X-160=0

(X+16)(X-10)=0

X=-16,X=10。

七年级上学期数学学案与测评用一元一次方程解决问题(5)的答案

、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?

解:设乙队原来有a人,甲队有2a人

那么根据题意

2a-16=1/2×(a+16)-3

4a-32=a+16-6

3a=42

a=14

那么乙队原来有14人,甲队原来有14×2=28人

现在乙队有14+16=30人,甲队有28-16=12人

初一上学期数学导学练用方程解决问题4.3.2的答案

我们做过了

BDDB

1008

5倍

X+4=2(X-4)

X+8/12 -X/10=10/60

设甲乙速度为xkm

4y=x+36

36=y

36*2+36=108

答:.....

设步行X小时

36(1-X)+4X=28

X=1/4

答:....

设路枝扮程为Xkm

2X/5 +9X/4+9-X/6=3又41/60

X=4

下面一题目,我错的```不好意思``

初一上学期解一元一次方程,格式是什么?

例:2x+3=7

解:2x=7-3

2x=4

x=2

怎么利用一元一次方程解决问题

利用一元一次方程解决问题

1、审题

2、找准等量关系

3、设出未知数

4、列出方程

5、解方程

6、检验并答

急需初一上学期一元一次方程的题型啊~~我数学最不好,急需补啊

含字母系数的一元一次方程

教学目标

1.使学生理解和掌握含有字母系数的一元一次方程及其解法;

2.理解公式变形的意义并掌握公式变形的方法;

3.提高学生的运算和推理能力.

教育重点和难点

重点:含有字母系数的一元一次方程和解法.

难点:字母系数的条件的运用和公式变形.

教学过程设计

一、导入新课

问:什么叫方程?什么叫一元一次方程?

答:含有未知数的等式叫做方程,含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程.

例 解方程2x-1 3-10x+1 6=2x+1 4-1

解 去分母,方程两边都乘以12,得

4(2x-1)-2(10x+1)=3(2x+1)-12,

去括号,得

8x-4-20x-2=6x+3-12

移项,得

8x-20x-6x=3-12+4+2,

合并同类项,得

-18x=-3,

方程两边都除以-18,得

x=3 18 ,即 x=1 6.

二、新课

1.含字母系数的一元一次方程的解法.

我们把一元一次方程用一般的形式表示为

ax=b (a≠0),

其中x表示未知数,a和b是用字母表示的已知数,对未知数x来说,字母a是x的系数,叫做字母系数,字母b是常数项.

如果一元一次方程中的系数用字母来表示,那么这个方伍敏程就叫做含有字母系数的一元一

次方程.

以后如果没有特别说明,在含有字母系数的方程中,一般用a,b,c等表示已知数,用x,y,z等表示未知数.

含字母系数的一元一次方程的解法与只腔搭枝含有数字系数的一元一次方程的解法相同.按照解

一元一次方程的步骤,最后转化为ax=b(a≠0)的形式.这里应注意的是,用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.如(m-2)x=3,必须当m-2≠0时,即m≠2时,才有x=3 m-2 .这是含有字母系数的方程和只含有数字系数的方程的重要区别.

例1 解方程ax+b2=bx+a2(a≠b).

分析:这个方程中的字母a,b都是已知数,x是未知数,是一个含有字母系数的一元一次方程.这里给出的条件a≠b,是使方程有解的关键,在解方程的过程中要运用这个条件.

解 移项,得

ax-bx=a2-b2,

合并同类项,得

(a-b)x=a2-b2.

因为a≠b,所以a-b≠0.方程两边都除以a-b,得

x=a2-b2 a-b=(a+b)(a-b) a-b,

所以 x=a+b.

指出:

(1)题中给出a≠b,在解方程过程中,保证了用不等于零的式子a-b去除方程的两边后所得的方程的解是原方程的解;

(2)如果方程的解是分式形式时,一般要化成最简分式或整式.

例2 x-b a=2-x-a b(a+b≠0).

观察方程结构的特点,请说出解方程的思路.

答:这个方程中含有分式,可先去分母,把方程转化成含有字母系数的一元一次方程

的一般形式.在方程变形中,要应用已知条件a+b≠0.

解 去分母,方程两边都乘以ab得

b(x-b)=2ab-a(x-a),

去括号,得

bx-b2=2ab-ax+a2,

移项,得

ax+bx=a2+2ab+b2

合并同类项,得

(a+b)x=(a+b)2.

因为a+b≠0,所以x=a+b.

指出:ab≠0是一个隐含条件,这是因为字母a,b分别是方程中的两个分式的分母,因此a≠0,b≠0,所以ab≠0.

例3 解关于x的方程

a2+(x-1)ax+3a=6x+2(a≠2,a≠-3).

解 把方程变形为,得

a2x-a2+ax+3a=6x+2,

移项,合并同类项,得

a2x+ax-6x=a2-3a+2,

(a2+a-6)x=a2-3a+2,

(a+3)(a-2)x=(a-1)(a-2).

因为a≠2,a=-3,所以a+3≠0,a-2≠0.方程两边都除以(a+3)(a-2),得

x=a-1 a+3.

2.公式变形.

在物理课中我们学习了很多物理公式,如果q表示燃烧值,m表示燃料的质量,那么完全燃烧这些燃料产生的热量W,三者之间的关系为W=qm,又如,用Q表示通过异体横截面的电量,用t表示时间,用I表示通过导体电流的大小,三者之间的关系为I=Qt.在这个公式中,如果用I和t来表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q来表示t,也就是已知I和Q,,求t,就得到t=QI.

像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形.

把公式中的某一个字母作为未知量,其它的字母作为已知量,求未知量,就是解含字母

系数数的方程.也就是说,公式变形实际就是解含有字母系数的方程.公式变形不但在数学,而且在物理和化学等学科中非常重要,我们要熟练掌握公式变形的技能.

例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t.

分析:已知υ,υo和a,求t,也就是把υ,υo和a作为已知量,解关于未知量t的字母系数的方程.

解 移项,得

υ-υ0=at.

因为a≠0,方程两边都除以a,得

t=υ-υo a.

例5 在梯形面积公式s=12(a+b)h中,已知a,b,h为正数.

(1)用s,a,b表示h;(2)用S,b,h表示a.

问:(1)和(2)中哪些是已知量?哪些是未知量;

答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量.

解 (1)方程两边都乘以2,得

2s=(a+b)h.

因为a与b都是正数,所以a≠0,b≠0,即a+b≠0,方程两边都除以a+b,得

h=2sa+b.

(2)方程两边都乘以2,得

2s=(a+b)h,

整理,得

ah=2s-bh.

因为h为正数,所以h≠0,方程两边都除以h,得

a=2s-bh h.

指出:题是解关于h的方程,(a+b)可看作是未知量h的系数,在运算中(a+b)h不要展开.

三、课堂练习

1.解下列关于x的方程:

(1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b);

(3)m2(x-n)=n2(x-m)(m2≠n2);

(4)ab+xa=xb-ba(a≠b);

(5)a2x+2=a(x+2)(a≠0,a≠1).

2.填空:

(1)已知y=rx+b r≠0,则x=_______;

(2)已知F=ma,a≠0,则m=_________;

(3)已知ax+by=c,a≠0,则x=_______.

3.以下公式中的字母都不等于零.

(1)求出公式m=pn+2中的n;

(2)已知xa+1b=1m,求x;

(3)在公式S=a+b2h中,求a;

(4)在公式S=υot+12t2x中,求x.

答案:

1.(1)x=3a+5b 3; (2)x=ab; (3)x=mn m+n; (4)x=a2+b2 a-b (5)x=2a.

2.(1)x=y-b r; (2)m=Fa; (3)x=c-by a.

3.(1)n=p-2m m; (2)x=ab-am bm; (3)a=2s-bh h;

(4)x=2s-2υott2.

四、小结

1.含字母系数的一元一次方程与只含有数字系数的一元一次方程的解法相同,但应特别注意,用含有字母的式子去乘或除方程的两边时,这个式子的值不能为零.我们所举的例题及课堂练习的题目中所给出的条件,都保证了这一点.

2.对于公式变形,首先要弄清公式中哪些是已知量,哪个是未知量.把已知量作为字

母系数,求未知量的过程就是解关于字母系数的方程的过程.

五、作业

1.解下列关于x的方程

(1)(m2+n2)x=m2-n2+2mnx(m-n≠0);

(2)(x-a)2-(x-b)2=2a2-2b2 (a-b≠0);

(3)x+xm=m(m≠-1);

(4)xb+b=xa+a(a≠b);

(5)m+nx m+n=a+bx a+b(mb≠na).

2.在公式M=D-d 2l中,所有的字母都不等于零.

(1)已知M,l ,d求D; (2)已知M,l D,求d.

3.在公式S=12n[a1+(n-1)d]中,所有的字母都是正数,而且n为大于1的整数,求d.

答案:

1.(1)x=m+n m-n; (2)x=-a+b 2; (3)x=m2 m+1; (4)x=ab; (5)x=1.

2.(1)D=2lM+d; (2)d=D-2lM.

3.d=2S-na1 n(n-1).

课堂数学设计说明

1.学生对含有字母系数的方程的认识和解法以及公式变形,接受起来有一定困难.含字

母系数的方程与只含数字系数的方程的关系,是一般与特殊的关系,当含有字母系数的方程

中的字母给出特定的数字时,就是只含数字系数的方程.所以在教学设计中是从复习解只含

数字系数的一元一次方程入手,过渡到讨论含字母系数的一元一次方程的解法和公式变形,

体现了遵循学生从具体到抽象,从特殊到一般的思维方式和认识事物的规律.

这个吧

初一上学期数学方程问题

原方程可化为:

5(x+2)=2(1-3x)-3

5x+10=2-6x-3

11x=-11

x=-1

初一上册数学如何用一元一次方程解时钟问题?

设未知数 6X-0.5X=90

用一元一次方程解决问题的技巧

关键是搞清楚各个变量之间的关系。

一元一次方程100题

所谓一元一次方程,顾名思义就是一个元一个次。元就是未知数,用的最多的就是X。一元是指只存在一个未知数(比如一个方程中的未知数是X,不管是一个还是两个或者多个,只要没有其他Y ,Z 什么的,都叫一元)。次就是未知数的次数,如果理解不了的话就这么想,一个数的平方是二次,立方是3次。X的平方是X*X,X的立方是X*X*X(*是乘号的意思)。那么X的一次方就是它自己。

下面怎样解一元一次方程。例如3+X=5这个方程,理解为3和一个数相加等于5,连一年级小孩子都知戚链消道这个数是2。算法就是X=5-3 求出X=2。那么3X=12这个方程想必也难不倒你吧,结果是4。现在上升一点难度 2X+5X-3X=12。可以这么理解两个X加上五个X再减去三个X是四个X,四个X等于12,那么X等于3。以上的方程都有一个特点,就是X都在左边,而实际中却不都是这样,比如2X=10-3X这样的似乎就有些头疼了,如果把那个3X移到左边来就好说了。下面叫你怎样移等号两边的数。一个数从等号左边移到右边(或从右移到左),如果它的前面是减号,移过去就变成加号,如果它前面是加号或者没符号(没符号其实就是加号,这是正负数的知识)移过去就变成减号。

一元一次方程是几年级知识点

这篇文章给大家分享初一数学上册元一次方程知识点,供参考!

初一数学上册一元一次方程知识点

(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

(二)一元一次方程

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的锋耐虚值叫做方程式的解。

(二)等式的性质

1.等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

2.等式两边银燃同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c或a÷c=b÷c (c≠0)

3.等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

(三)解方程式的步骤

解一元一次亩和方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

1.去分母:把系数化成整数。

2.去括号

3.移项:把等式一边的某项变号后移到另一边。

4.合并同类项

5.系数化为1.

一元一次方程10道及答案

1、合并同类项2、系数化为一。3、有乘方先算乘方,有括号举厅先算括号正余隐里的,先乘除后加减。4、先写“解”。5、检验(代入求值)毁芦。

以上就是七年级上册一元一次方程的全部内容,1.方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800。

猜你喜欢