数学高二公式?1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r 4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式 1、那么,数学高二公式?一起来了解一下吧。


1、长方形、正方形的周长和面积公式:
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a·a= a²
2、三角形、平行四边形、梯形的面积公式:
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
3、圆的周长和面积公式:
圆的周长=直径×π
公式:L=πd=2πr
圆的面积=半径×半径×π
公式:S=πr²
4、圆柱的侧面积和表面积公式:
圆柱的侧面积:
圆柱的侧面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
圆柱的表面积:
圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr²
扩展资料
1、圆柱圆锥的体积公式:
圆柱的体积:
圆柱的体积等于底面积乘高。
公式:V=Sh
圆锥的体积=1/3底面×积高。
公式:V=1/3Sh
2、分数的加、减法则:
同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
3、分数的乘法则:
用分子的积做分子,用分母的积做分母。
4、分数的除法则:
除以一个数等于乘以这个数的倒数。
高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。那么高二数学都有哪些公式呢?接下来我为你整理了高二数学公式,一起来看看吧。
高二数学公式:推导
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin&;sup2;a)+(1-2sin&;sup2;a)sina
=3sina-4sin&;sup3;a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos&;sup2;a-1)cosa-2(1-sin&;sup2;a)cosa
=4cos&;sup3;a-3cosa
sin3a=3sina-4sin&;sup3;a
=4sina(3/4-sin&;sup2;a)
=4sina[(√3/2)&;sup2;-sin&;sup2;a]
=4sina(sin&;sup2;60°-sin&;sup2;a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos&;sup3;a-3cosa
=4cosa(cos&;sup2;a-3/4)
=4cosa[cos&;sup2;a-(√3/2)&;sup2;]
=4cosa(cos&;sup2;a-cos&;sup2;30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
高二数学公式:半角公式与三角和
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα?cosβ?cosγ+cosα?sinβ?cosγ+cosα?cosβ?sinγ-sinα?sinβ?sinγ
cos(α+β+γ)=cosα?cosβ?cosγ-cosα?sinβ?sinγ-sinα?cosβ?sinγ-sinα?sinβ?cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα?tanβ?tanγ)/(1-tanα?tanβ-tanβ?tanγ-tanγ?tanα)
高二数学公式:两角和差与和差化积
两角和差
cos(α+β)=cosα?cosβ-sinα?sinβ
cos(α-β)=cosα?cosβ+sinα?sinβ
sin(α±β)=sinα?cosβ±cosα?sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα?tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα?tanβ)
和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
锐角三角函数公式正弦:sin α=∠α的对边 / 斜边 余弦:cos α=∠α的邻边 / 斜边 正切:tan α=∠α的对边 / ∠α的邻边 余切:cot α=∠α的邻边 / ∠α的对边 二倍角公式sin2A=2sinA�6�1cosA cos2A=cos^A-sin^A=1-2sin^A=2cos^A-1 tan2A=(2tanA)÷(1-tan^A) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A^2 +B^2 +2ABcos(θ-φ)} �6�1 sin{ ωt + arcsin[ (A�6�1sinθ+B�6�1sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容 诱导公式sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式 其它公式1) (sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
高二数学公式如下:
1、乘法与因式分解
a2-b2=(a+b)(a-b)、a3+b3=(a+b)(a2-ab+b2)、a3-b3=(a-b)(a2+ab+b2)。
2、三角不等式
|a+b|≤|a|+|b|、|a-b|≤|a|+|b|、|a|≤b<=>-b≤a≤b。
|a-b|≥|a|-|b|-|a|≤a≤|a|。
3、一元二次方程的解
b+√(b2-4ac)/2a-b-√(b2-4ac)/2a。
4、根与系数的关系
X1+X2=-b/aX1*X2=c/a注:韦达定理。
5、判别式
b2-4ac=0注:方程有两个相等的实根。
b2-4ac>0注:方程有两个不等的实根。
b2-4ac<0注:方程没有实根,有共轭复数根。
6、两角和公式
sin(A+B)=sinAcosB+cosAsinB、sin(A-B)=sinAcosB-sinBcosA。
cos(A+B)=cosAcosB-sinAsinB、cos(A-B)=cosAcosB+sinAsinB。
高中数学中的公式不但数量大而且结构复杂,不容易记忆。因此高二学生需要认真记忆并掌握重要数学公式。下面我给大家带来高二数学必背公式,希望对你有帮助。
高二数学必背公式(一) 高二数学必背公式(二) 点击下一页分享更多高二数学必背公式以上就是数学高二公式的全部内容,高二数学公式如下:1、乘法与因式分解 a2-b2=(a+b)(a-b)、a3+b3=(a+b)(a2-ab+b2)、a3-b3=(a-b)(a2+ab+b2)。2、三角不等式 |a+b|≤|a|+|b|、|a-b|≤|a|+|b|、|a|≤b<=>-b≤a≤b。