七年级上册期末数学题?点评: 本题考查了由实际问题抽象出一元一次方程的知识,理解什么情况下售价最低,并且理解打折的含义,是解决本题的关键. 七年级上学期期末数学考试试卷及答案解析二 二、那么,七年级上册期末数学题?一起来了解一下吧。
学好数学要付出汗水的,劳作给人予磨砺,却能给人予长久,以下是我为你整理的七年级上册数学期末试题,希望对大家有帮助!
七年级上册数学期末试卷
一、相信你的选择(每小题3分,共36分)
1. 的倒数是( ).(A)5 (B) (C)5 (D)
2.下列图形中,经过折叠不能围成一个立方体的是( ).
3.绝对值不大于10的所有整数的和等于( ).
(A) (B) (C)10 (D)
4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为( ).
(A)7.6057×105人 (B)7.6057×106人
(C)7.6057×107人 (D)0.76057×107人
5.28 cm接近于( ).
(A)珠穆朗玛峰的高度 (B)三层楼的高度
(C)姚明的身高 (D)一张纸的厚度
6.为了筹办“经典红歌唱响金色校园”大合唱,学校选了四首经典红歌:①《保卫黄河》;②《十送红军》;③《我们走在大路上》;④《我的祖国》.班长对全班50名同学“你最想唱哪首红歌”作了问卷调查,小明将班长的统计结果绘制成如图2所示的统李腔竖计图,并得出以下四个结论,其中错误的是( ).
(A)最想唱《十送红军》的人最多
(B)最想唱《我的祖国》的人数是最想唱《我们走在大路上》的人数的3倍
(C)最想唱《保卫黄河》的人数占全班人数的40%
(D)有10人对这4首红歌都不想唱
7.在① 与 ;② 与 ;③ 与 ;④ 与 中,分别是同类项的是( ).(A)②④ (B)①③ (C)②③ (D)①②
8.计算 (– 1)2 + (– 1)3 =( ).(A)– 2 (B)– 1 (C)0 (D)2
9.某工厂第一个生产a件产品,第二年比第一年增产了20%,则两年圆配共生产产品的件数为( ).(A)0.2a (B)a (C)1.2a (D)2.2a
10.一支球队参加比赛,开局9场保持不败,共积21分.比赛规定胜一场得3分,平一场得1分,则该对共胜的场数为( ).(A)4 (B)5 (C)6(D)7 11.多项式 与多项式 的和不含二次项,则m为( ).(A)2 (B)-2 (C)4 (D)-4
12.如果a-5b= -3,那么代数式5-a+5b 的值是( ) A.0 B.2 C.5 D.8
二、试试你的身手(每小题3分,共24分)
13比较大小: _____ ; ______ .
14直角三角尺绕它的一条直角边所在直线旋转一周,形成的几何体是 _____.
15已知线段AB=7cm,在直线AB上画线段BC=3cm,则线段AC=_______.
16知代数式 的值是1,则代数式 + 2011的值是 .
17 2011年6月3日以来,南方暴雨洪涝灾害已致使3657万人次受灾,为了帮助灾区人民度过难关,我校全体师生积极捐款,捐款金额共42500元,其中88名教师人均捐款a元,则该校学生共捐款 元(用含a的代数式表示).
18.若 和 是同类项,则 的值是 .
19.下面是一个被墨水污染过的方程: ,哪大答案显示此方程的解是 ,被墨水遮盖的是一个常数,则这个常数是__________.
20.规定*是一种运算符号,且a*b=a×b-2×a,则计算4*(2*3)= .
三、挑战你的技能(本大题共36分)
21.(每小题4分,共8分)计算:
(1) ;
(2) .
22.(本题8分)有一道题“先化简,再求值:15x2(6x2 +4x)(4x2 +2x3)+(5x2 +6x9),其中x = 2012.”小芳同学做题时把“x = 2012”错抄成了“x = 2021”,但她的计算结果却是正确的,你能说明这是什么原因吗?
23.(本题10分)(1)已知:如图3,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.
(2)根据(1)的计算过程与结果,设AC+BC= ,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.
24.(本题10分)某县为鼓励失地农民自主创业,在2010年对60位失地农民进行了奖励,共奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?
四、综合应用(本大题共24分)
25.(本题12分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如图4(部分信息未给出):
解答下列问题:
(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;
(2)求第五次人口普查中,该市常住人口每万人中具有初中学历的人数;
(3)第六次人口普查结果与第五次相比,每万人中初中学历的人数增加了多少人?
26.(本题12分)甲,乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超过部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).
(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;
(2)某顾客分别到两家超市买了相同的货物,并且所付费用也相同,你知道这位顾客共花了多少钱吗?请列出方程解答.
七年级上册数学期末试题答案
一、1~5DDBBC
6~10DACDC
11.C 12.D
二、13. <,< 14. 圆锥 15. 10cm或4cm 16. 201017. 42500-88a
18. 1 19. 20. .
三、21.解:(1) = = =1.
(2) = = =0.
22.解:15x2(6x2 +4x)(4x2 + 2x 3)+(5x2 + 6x 9)
=15x2 6x2 4x 4x2 x 3 5x2 + 6x9
=15x2 6x24x2 5x2 4x x+ 6x 3 9=12.
因为原多项式化简(即去括号、合并同类项)后的结果为12,这个结果不含字母x,故原多项式的值与x的取值无关.因此,小芳同学将“x=2012”错抄成“x=2021”,结果仍 然是正确的.
23.解:(1)因为点M、N分别是AC、BC的中点,所以
MC= AC= ×12=6,NC= BC=2.
所以MN=MC+NC=6+2=8.
(2)MN的长度是 .
已知线段分成两部分,它们的中点之间的距离等于原来线段长度的一半.
24. 解:设失地农民中自主创业连续经营一年以上的有x人,则自主创业且解决5人以上失业人员稳定就业一年以上的农民有(60-x)人.根据题意列出方程
1000x +(60-x)(1000 + 2000)=100000.
解得:x = 40.
所以60-x=20.
答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.
四、25.解:(1)450-36-55—180-49=130(万人),作图正确(图略);
(2)(1-3%-10%-38%-17%)×10000 = 3200(人);
(3)180÷450×10000=4000(人),4000-3200=800(人).
26.(1)在甲超市购物所付的费用是:
300+0.8(x300)=0.8x+60(元);
在乙超市购物所付的费用是:
200+0.85(x200)=0.85x+30(元).
(2)设这位顾客每次花x元钱,则两次共花了2x元钱,根据题意得:
0.8x+60=0.85x+30,
解这个方程,得x=600.
这时,2x=1200(元).
答:这位顾客两次共花了1200元钱.
辛劳的付出必有丰厚羡档友回报,寒窗苦读为前途,望子成龙父母情。祝你七年级数学期末考试取得好成绩,期待你的成功!我整理了关于七年级数学上册期末试题人教版,希望对大家有帮助!
七年级数学上册期末试题
一、选择题:每小题3分,共20分
1.﹣8的相反数是()
A.﹣8 B.8 C. D.
2.下列计算结果,错误的是()
A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21
3.1500万(即15000000)这个数用科学记数法可表示为()
A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108
4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()
A.1 B.11 C.15 D.23
5.下列方程中是一元一次方程的是()
A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0
6.用一副三角板不可以拼出的角是()
A.105° B.75° C.85° D.15°
7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()
A.10cm B.2cm C.10cm或者2cm D.无法确定
8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()
A.120° B.105° C.100° D.90°
9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()
A.330元 B.210元 C.180元 D.150元
10.指出图中几何体截面的形状()
A. B. C. D.
二、填空题:每小题2分,共14分
11.化简:﹣[﹣(+5)]=.
12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是.
13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为.
14.同类项﹣ a3b,3a3b,﹣ a3b的和是.
15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.
16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.
17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为.
三、解答题
18.计算:
(1)|(﹣7)+(﹣2)|+(﹣3)
(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.
19.在数轴上兄槐表示下列各数,并用“<”号把它们连接起来.
1.5,0,﹣3,﹣(﹣5),﹣|﹣4|
20.解方程:
(1) x﹣1=2
(2) = .
21.先化蠢胡简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.
22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度数;
(2)试判断∠BOE和∠COE有怎样的数量关系,你的理由.
23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.
24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.
七年级数学上册期末试题人教版参考答案
一、选择题:每小题3分,共20分
1.﹣8的相反数是()
A.﹣8 B.8 C. D.
【考点】相反数.
【分析】直接根据相反数的定义进行解答即可.
【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.
故选B.
【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.
2.下列计算结果,错误的是()
A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21
【考点】有理数的乘法.
【分析】根据结果的符号即可作出判断.
【解答】解:A、(﹣3)×(﹣4)×(﹣ )=﹣(3×4× )=﹣3,正确;
B、(﹣ )×(﹣8)×5中负因数的分数为偶数,积为正数,故B选项错误;
C、(﹣6)×(﹣2)×(﹣1)=﹣(6×2×1)=﹣12,正确;
D、(﹣3)×(﹣1)×(+7)=3×1×7=21,正确.
故其中错误的是B.
故选:B.
【点评】本题主要考查的是有理数的乘法,掌握有理数的乘法法则是解题的关键.
3.1500万(即15000000)这个数用科学记数法可表示为()
A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:15000000=1.5×107,
故选 C.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()
A.1 B.11 C.15 D.23
【考点】代数式求值.
【专题】计算题;实数.
【分析】由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.
【解答】解:∵2x2+3y+3=8,
∴2x2+3y=5,
则原式=3(2x2+3y)+8=15+8=23,
故选D
【点评】此题考查了代数式求值,利用了整体代换的方法,熟练掌握运算法则是解本题的关键.
5.下列方程中是一元一次方程的是()
A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0
【考点】一元一次方程的定义.
【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【解答】解:A、x+3=3﹣x是一元一次方程,故A正确;
B、x+3=y+2是二元一次方程,故B错误;
C、 =1是分式方程,故C错误;
D、x2﹣1=0是一元二次方程,故D错误;
故选:A.
【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.
6.用一副三角板不可以拼出的角是()
A.105° B.75° C.85° D.15°
【考点】角的计算.
【专题】计算题.
【分析】一副三角板各角的度数是30度,60度,45度,90度,因而把他们相加减就可以拼出的度数,据此得出选项.
【解答】解:已知一副三角板各角的度数是30度,60度,45度,90度,
可以拼出的度数就是用30度,60度,45度,90度相加减,
45°+60°=105°,
30°+45°=75°,
45°﹣30°=15°,
显然得不到85°.
故选:C.
【点评】此题考查的知识点是角的计算,关键明确用一副三角板可以拼出度数,就是求两个三角板的度数的和或差.
7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()
A.10cm B.2cm C.10cm或者2cm D.无法确定
【考点】两点间的距离.
【专题】分类讨论.
【分析】讨论:当点C在线段AB的延长线上时,AC=AB+BC;当点C在线段AB的上时,AC=AB﹣BC,再把AB=6cm,BC=4cm代入计算可求得AC的长,即得到A、C间的距离.
【解答】解:当点C在线段AB的延长线上时,如图,
AC=AB+BC=6+4=10(cm),
即A、C间的距离为10cm;
当点C在线段AB的上时,如图,
AC=AB﹣BC=6﹣4=2(cm),
即A、C间的距离为2cm.
故A、C间的距离是10cm或者2cm.
故选C.
【点评】本题考查了两点间的距离:两点间的线段的长叫两点间的距离.也考查了分类讨论思想.
8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()
A.120° B.105° C.100° D.90°
【考点】钟面角.
【专题】计算题.
【分析】由于钟表上的时间为晚上8点,即时针指向8,分针指向12,这时时针和分针之间有4大格,根据钟面被分成12大格,每大格为30°即可得到它们的夹角.
【解答】解:∵钟表上的时间为晚上8点,即时针指向8,分针指向12,
∴这时时针和分针之间的夹角(小于平角)的度数=(12﹣8)×30°=120°.
故选A.
【点评】本题考查了钟面角的问题:钟面被分成12大格,每大格为30°.
9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()
A.330元 B.210元 C.180元 D.150元
【考点】一元一次方程的应用.
【分析】已知八折出售可获利90元,根据:进价=标价×8折﹣获利,可列方程求得该商品的进价.
【解答】解:设每件的进价为x元,由题意得:
300×80%﹣90=x
解得x=150.
故选D.
【点评】本题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×80%﹣获利,利用方程思想解答.
10.指出图中几何体截面的形状()
A. B. C. D.
【考点】截一个几何体.
【分析】用平面取截一个圆锥体,横着截时截面是椭圆或圆(截面与上下底平行).
【解答】解:当截面平行于圆锥底面截取圆锥时得到截面图形是圆.
故选B.
【点评】本题考查几何体的截面,关键要理解面与面相交得到线
二、填空题:每小题2分,共14分
11.化简:﹣[﹣(+5)]=5.
【考点】相反数.
【分析】根据多重符号化简的法则化简.
【解答】解:﹣[﹣(+5)]=+5=5.
【点评】本题考查多重符号的化简,一般地,式子中含有奇数个“﹣”时,结果为负;式子中含有偶数个“﹣”时,结果为正.
12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是1.
【考点】非负数的性质:偶次方;非负数的性质:绝对值.
【分析】根据非负数的性质可求出x、y的值,再将它们代入(x+y)2中求解即可.
【解答】解:∵|x+1|+(x﹣y+3)2=0,
∴x+1=0,x﹣y+3=0;
x=﹣1,y=2;
则(x+y)2=(﹣1+2)2=1.
故答案为:1.
【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.
13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为﹣14.
【考点】数轴.
【分析】根据题意和数轴可以得到被墨迹盖住的部分之间的整数,从而可求得墨迹盖住的整数之和.
【解答】解:根据题意和数轴可得,
被墨迹盖住的整数之和是:(﹣6)+(﹣5)+(﹣4)+(﹣3)+(﹣2)+1+2+3=﹣14,
故答案为:﹣14.
【点评】本题考查数轴,解题的关键是明确题意,利用数形结合的思想写出被遮住部分之间的所有整数.
14.同类项﹣ a3b,3a3b,﹣ a3b的和是 a3b.
【考点】合并同类项.
【分析】根据合并同类项系数相加字母及指数不变,可得答案.
【解答】解:﹣ a3b+3a3b+﹣ a3b= a3b,
﹣ a3b,3a3b,﹣ a3b的和是 a3b,
故答案为: a3b.
【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.
15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=﹣10.
【考点】解一元一次方程.
【专题】计算题;新定义;一次方程(组)及应用.
【分析】已知等式利用题中的新定义化简,求出解即可得到n的值.
【解答】解:利用题中的新定义化简得:2n+2﹣n=﹣8,
移项合并得:n=﹣10,
故答案为:﹣10
【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.
16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.
【考点】角平分线的定义.
【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.
【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,
∴∠DEB=2∠DEF=2×70°=140°,
∴∠AED=180°﹣∠DEB=180°﹣140°=40°.
故答案为:40°.
【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.
17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为﹣2016a2016.
【考点】单项式.
【专题】规律型.
【分析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.
【解答】解:第2016个单项式为:﹣2016a2016,
故答案为:﹣2016a2016.
【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.
三、解答题
18.计算:
(1)|(﹣7)+(﹣2)|+(﹣3)
(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.
【考点】有理数的混合运算.
【分析】(1)先算绝对值符号里面的,再算加减即可;
(2)先算乘方,再算乘除,最后算加减即可.
【解答】解:(1)原式=9﹣3
=6;
(2)原式=16+3×(﹣1)﹣2×9
=16﹣3﹣18
=﹣5.
【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.
19.在数轴上表示下列各数,并用“<”号把它们连接起来.
1.5,0,﹣3,﹣(﹣5),﹣|﹣4|
【考点】有理数大小比较;数轴.
【分析】把各数在数轴上表示出来,从左到右用“<”号连接起来即可.
【解答】解:如图所示,
,
故﹣|﹣4|<﹣3<0<1.5<﹣(﹣5).
【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.
20.解方程:
(1) x﹣1=2
(2) = .
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】(1)方程去分母,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:(1)去分母得:x﹣2=4,
解得:x=6;
(2)去分母得:3(3y﹣1)﹣12=2(5y﹣7),
去括号得:9y﹣3﹣12=10y﹣14,
移项合并得:y=﹣1.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.
【考点】整式的加减—化简求值.
【分析】首先化简,进而合并同类项进而求出代数式的值.
【解答】解:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3)
=2x3﹣4y2﹣x+2y﹣x+3y﹣2x3,
=4y2﹣2x+5y,
∵x=﹣3,y=﹣2,
∴原式=﹣4y2﹣2x+5y=﹣4×(﹣2)2﹣2×(﹣3)+5×(﹣2)=﹣20.
【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.
22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度数;
(2)试判断∠BOE和∠COE有怎样的数量关系,你的理由.
【考点】角的计算;角平分线的定义.
【分析】(1)根据角平分线的定义,邻补角的定义,可得答案;
(2)根据角的和差,可得答案.
【解答】解:(1)由角平分线的定义,得
∠AOD=∠COD= ∠AOC= ×50°=25°.
由邻补角的定义,得
∠BOD=180°﹣∠AOD=180°﹣25°=155°;
(2)∠BOE=∠COE,理由如下:
由角的和差,得
∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,
∠COE=∠DOE﹣∠COD=90°﹣25°=65°,
则∠BOE=∠COE.
【点评】本题考查了角的计算,利用角的和差是解题关键.
23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.
【考点】两点间的距离.
【专题】方程思想.
【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.
【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.
∵点E、点F分别为AB、CD的中点,∴AE= AB=1.5xcm,CF= CD=2xcm.
∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.
∴AB=12cm,CD=16cm.
【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.
24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.
【考点】一元一次方程的应用.
【分析】可分为购买一等席和二等席;一等席和三等席;二等席和三等席位三种情况,然后根据门票总数为36张,总费用为10050元,列方程求解即可.
【解答】解:①设购买一等席x张,二等席(36﹣x)张.
根据题意得:600x+400(36﹣x)=10050.
解得:x=﹣21.75(不合题意).
②设购买一等席x张,三等席(36﹣x)张.
根据题意得:600x+250(36﹣x)=10050.
解得:x=3.
∴可购买一等席3张,二等席位33张.
③设购买二等席x张,三等席(36﹣x)张.
根据题意得:400x+250(36﹣x)=10050.
解得:x=7.
∴可购买二等席7张,二等席位29张.
答;共有2中方案可供选择,方案①可购买一等席3张,二等席位33张;方案②可购买二等席7张,二等席位29张.
【点评】本题主要考查的是一元一次方程的应用,根据门票的总张数为36张,总票价为10050元分类列出方程是解题的关键.
2015年就快过去,期末考试也就要到来。下面是由整理的人教版七年级上册数学期末试卷,欢迎阅读。更多相关实用资料,请关注本栏目。
【人教版七年级上册数学期末试卷】
一、填空题(每题2分,共20分)
1、水位升高3m记作3m,那么5m表示_____________________.
2、开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的桌子,一会儿扮老一列课桌摆在一条直线上,整整齐齐,这是因为______________________________________________.3、0.5的相反数是________;倒数是_________.
4、一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是___________.
逗桥5、单项式5xy的系数是________;次数是__________.
6、如图1,CB5cm,DB9cm,点D为AC的中点,则AB的长为______cm.
图1
7、若x2是关于方程2x3m10的解,则m___________.
8、∠1与∠2互余,∠2与∠3互补,∠1=34°,则∠3=___________.9、写出一个解为x1的一元一次方程_______________________.七年级上册数学期末卷10、用火柴棍像如图这样搭三角形:你能找出规律猜想出下列两个问题吗?
(1)搭7个三角形需要_____根火柴,(2)搭n个三角形需要_________根火柴。
到了初中,如果还想要提高七年级数学成绩的话,平时做试题就要多注意一些细节。以下是我为你整理的七年级数学上册期末测试题,希望对大家有帮助!
七年级数学上册期末测试题
一、选择题(每小题3分,共36分)
1.下列方程中,是一元一次方程的是()
A.x2-2x=4
B.x=0
C.x+3y=7
D.x-1=
2.下列计算正确的是()
A.4x-9x+6x=-x
B.a-a=0
C.x3-x2=x
D.xy-2xy=3xy
3.数据1 460 000 000用科学记数法表示应是()
A.1.46×107
B.1.46×109
C.1.46×1010
D.0.146×1010
4.用科学计算器求35的值,按键顺序是()
A.3,x■,5,= B.3,5,x■
C.5,3,x■ D.5,x■,3,=
5.
在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()
A.69° B.111°
C.159° D.141°
6.一件衣服按原价的九折销售,现价为a元,则誉顷和原价为()
A.a B.a
C.a D.a
7.下列各式中,与x2y是同类项的是()
A.xy2 B.2xy
C.-x2y D.3x2y2
8.若长方形的周长为6m,一边长为m+n,则另一边长为()
A.3m+n
B.2m+2n
C.2m-n
D.m+3n
9.已知∠A=37°,则∠A的余角等于()
A.37° B.53°
C.63° D.143°
10.将下边正方体的平面展开图重新折成正方体后,“董”字对面的字是()
A.孝 B.感
C.动 D.天
11.若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()
A.7 B.-7
C.- D.
12.同一条直线上有若干个点,若构成庆盯的射线共有20条,则构成的线段共有()
A.10条 B.20条
C.45条 D.90条
二、填空题(每小题4分,共20分)
13.已知多项式2mxm+2+4x-7是关于x的三次多项式,则m=.
14.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).则塔的顶层有盏灯.
15.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点.若MN=a,BC=b,则AD的长是.
16.瑞士中学教师巴尔末成功地从光谱数据,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.
17.如乎首图,现用一个矩形在数表中任意框出ab
cd4个数,则
(1)a,c的关系是;
(2)当a+b+c+d=32时,a=.
三、解答题(共64分)
18.(24分)(1)计算:-12 016-[5×(-3)2-|-43|];
(2)解方程:=1;
(3)先化简,再求值:
a2b-5ac-(3a2c-a2b)+(3ac-4a2c),其中a=-1,b=2,c=-2.
19.(8分)解方程:14.5+(x-7)=x+0.4(x+3).
20.(8分)如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.
21.(8分)某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?
22.(8分)一位商人来到一个新城市,想租一套房子,A家房主的条件是:先交2 000元,然后每月交租金380元,B家房主的条件是:每月交租金580元.
(1)这位商人想在这座城市住半年,那么租哪家的房子合算?
(2)这位商人住多长时间时,租两家房子的租金一样?
23.(8分)阅读下面的材料:
高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100, ①
则S=100+99+98+…+1. ②
①+②,得
2S=101+101+101+…+101.
(①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)
所以2S=100×101,
S=×100×101. ③
所以1+2+3+…+100=5 050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.
解答下面的问题:
(1)请你运用高斯的“倒序相加法”计算:1+2+3+…+101.
(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:
1+2+3+…+n=.
(3)请你利用(2)中你猜想的结论计算:1+2+3+…+1 999.
七年级数学上册期末测试题答案
一、选择题
1.B选项A中,未知数的最高次数是二次;选项C中,含有两个未知数;选项D中,未知数在分母上.故选B.
2.B选项A中,4x-9x+6x=x;选项C中,x3与x2不是同类项,不能合并;选项D中,xy-2xy=-xy.故选B.
3.B4.A5.D
6.B由原价×=现价,得
原价=现价÷=现价×.
7.C
8.C另一边长=×6m-(m+n)=3m-m-n=2m-n.
9.B10.C
11.C根据题意,得[-π]=-4,
所以3×(-4)-2x=5,解得x=-.
12.C由构成的射线有20条,可知这条直线上有10个点,所以构成的线段共有=45条.
二、填空题
13.1由题意得m+2=3,解得m=1.
14.3
15.2a-bAM+ND=MB+CN=a-b,AD=AM+ND+MN=a-b+a=2a-b.
16.这些数据的分子为9,16,25,36,分别是3,4,5,6的平方,
所以第七个数据的分子为9的平方是81.
而分母都比分子小4,所以第七个数据是.
17.(1)a+5=c或c-a=5(2)5(1)a与c相差5,所以关系式是a+5=c或c-a=5.
(2)由数表中数字间的关系可以用a将其他三个数都表示出来,分别为a+1,a+5,a+6;当a+b+c+d=32时,有a+a+1+a+5+a+6=32,解得a=5.
三、解答题
18.解:(1)原式=-1-(45-64)=-1+19=18.
(2)2(2x+1)-(10x+1)=6,
4x+2-10x-1=6,
4x-10x=6-2+1,
-6x=5,x=-.
(3)a2b-5ac-(3a2c-a2b)+(3ac-4a2c)
=a2b-5ac-3a2c+a2b+3ac-4a2c
=a2b-2ac-7a2c.
当a=-1,b=2,c=-2时,原式=×(-1)2×2-2×(-1)×(-2)-7×(-1)2×(-2)=3-4+14=13.
19.解:(x-7)=x+(x+3).
15×29+20(x-7)=45x+12(x+3).
435+20x-140=45x+12x+36.
20x-45x-12x=36-435+140.
-37x=-259.解得x=7.
20.解:因为∠AOE=36°,所以∠AOB=180°-∠AOE=180°-36°=144°.
又因为OC平分∠AOB,
所以∠BOC=∠AOB=×144°=72°.
因为OD平分∠BOC,
所以∠BOD=∠BOC=×72°=36°.
所以∠AOD=∠AOB-∠BOD=144°-36°=108°.
21.解:设乙再做x天可以完成全部工程,则
×6+=1,解得x=.
答:乙再做天可以完成全部工程.
22.解:(1)A家租金是380×6+2000=4280(元).
B家租金是580×6=3480(元),所以租B家房子合算.
(2)设这位商人住x个月时,租两家房子的租金一样,则380x+2000=580x,解得x=10.
答:租10个月时,租两家房子的租金一样.
23.解:(1)设S=1+2+3+…+101, ①
则S=101+100+99+…+1. ②
①+②,得2S=102+102+102+…+102.
(①②两式左右两端分别相加,左端等于2S,右端等于101个102的和)
∴2S=101×102.∴S=×101×102.
∴1+2+3+…+101=5151.
(2)n(n+1)
(3)∵1+2+3+…+n=n(n+1),
∴1+2+3+…+1998+1999
=×1999×2000=1999000.
人教版初一上册数学期末试卷「附答案」
数学是一科比较难学的学科,要打好基础,就要多做试题,下面由我为大家带来的人教版初一上册数学期末试卷附答案,仅供参考~
【人教版初一上册数学期末试卷】
一、选择题(共15个小题,每小题2分,共30分)
1.如果向东走 记为 ,那么向西走 记为 ( )
A. B. C. D.
2.某市2010年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )
A.-10℃ B.-6℃ C.6℃ D.10℃
3.-6的绝对值等于 ( )
A. B. C. D.
4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )
A. 亿元 B. 亿元 C. 亿元 D. 亿元
5.当 时,代数式 的值是 ( )
A. B. C. D.
6.下列计算正确的是 ( )
A. B.
C. D.
7.将线段AB延长至C,再将线野裤段AB反向延长至D,则图中共有线段 ( )
A.8条 B.7条 C.6条 D.5条
8.下列语句正确的是 ( )
A.在所有联结两点的线中,直线最短
B.线段A曰是点A与点B的距离
C.三条直线两两相交,必定有三个交点
D.在同一平面内,两条不重合的直线握段,不平行必相交
9.已知线段 和点 ,如果 ,那么 ( )
A.点 为 中点 B.点 在线段 上
C.点 在线段 外 D.点 在线段 的延长线上
10.一个多项式减去 等于 ,则这个多项式是
A. B.
C. D.
11.若 ,则下列式子错误的是
A. B.
C. D.
12.下列哪个不等式组的解集在数轴上的表示如图所示
A. B.
C. D.
13.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55
A.35 B.55
C.70 D.110
14.把方程 的分颂皮简母化为整数的方程是( )
A.
B.
C.
D.
二、填空题(共10个小题,每小题2分,共20分)
16.比较大小: _________ (填“<”、“=”或“>”)
17.计算: _________
18.如果a与5互为相反数,那么a=_________
19.甲数 的 与乙数 的 差可以表示为_________
20.定义 ※ = ,则(1※2)※3=_________
21.如图,要使输出值Y大于100,则输入的最小正整数x是___________
22.如图,将一副三角板叠放在一起,使直角顶点重合于0点,则∠AOC+∠DOB=___________
度.
23.如图,∠AOB中,OD是∠BOC的'平分线,OE是∠AOC的平分线,若∠AOB=140 ,则∠EOD=___________度.
24.已知 ,则 ___________.
25.观察下面的一列单项式: ,…根据你发现的规律,第7个单项式为___________;第 个单项式为___________.
三、计算或化简(共4个小题,每小题4分,共16分)
26.计算:
27.计算:
28.计算:
29.化简:
四、解方程或不等式(共2个小题,每小题5分。
以上就是七年级上册期末数学题的全部内容,三、计算或化简(共4个小题,每小题4分,共16分) 26.计算: 27.计算: 28.计算: 29.化简: 四、解方程或不等式(共2个小题,每小题5分。共10分) 30.解方程: 五、。