当前位置: 首页 > 北京自学网 > 初中 > 七年级

七年级上册数学内容,七年级上册数学目录

  • 七年级
  • 2023-08-04

七年级上册数学内容?七年级上册数学书重要内容 (一)有理数 (1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(2)数轴:在数学中,可以用一条直线上的点表示数,那么,七年级上册数学内容?一起来了解一下吧。

上海数学七年级上册内容

七上共有《有理数掘槐》、《整式的加减》、《一元一次方程》、《几何图形初步》,

共四章内容:

第一章 有理数

1.1 正数和负数

1.2 有理数

1.3 有理数的加减法

实验与探究 填幻方

阅读与思考 中国人最先使用负数

1.4 有理数的乘除法

观察与猜想 翻牌游戏中的数学道理

1.5 有理数的乘方

数学活动

小结

复习题1

第二章 整式的加减

2.1 整式

阅读与思考 数字1与字母X的对话

2.2 整式的加减

信息技术应用 电子表格与数据计算

数学活动

小结

复习题2

第三章 一元一次方程

3.1 从算式到方程

阅读与思考 “方程”史话

3.2 解一元一次方程(一)——合并同类项与移项

实验与探究 无限循环小数化分数

3.3 解一元一次方程(二)——去括号与去分母

3.4 实际问题与一元一次方坦宽程

数学活动

小结

复习题3

第四章 几何图形初步

4.1 几何图形

阅读与思考 几何学的起源

4.2 直线、射线、线段

阅读与思考 长度的测量

4.3 角

4.4 课题学习 设计制作长方体形状的包装纸盒

数学活动

小结

复习题4

部分中英让散亮文词汇索引

七年级上册的数学课本 内容

七年级数学上册知识点总结(通用8篇)

总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以促使我们思考,为此要我们写一份总结。那么如何把总结写出新花样呢?下面是小编为大家整理的七年级数学上册知识点总结(通用8篇),欢迎大家分享。

七年级数学上册知识点总结 篇1

数轴

1、数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:(1)数轴是一条向两端无限延伸的直线;(2)原点、正方向、单位长度是数轴的三要素,三者缺一不

可;(3)同一数轴上的单位长度要统一;(4)数轴的三要素都是根据实际需要规定的。

2、数轴上的点与有理数的关系

(1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

(2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3、利用数轴表示两数大小

(1)在数轴上数的大小比较,右边的数总比左边的数大;

(2)正数都大于0,负数都小于0,正数大于负数;

(3)两个负数比较,距离原点远的数比距离原点近的数小。

初一上册数学有哪些内容

七年级(上)数学知识点归纳与总结

一、 知识梳理

知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、 -0.03%这样数叫做负数.它们都是比0小的数.0既不是正数也不是负数.我们可以用正数与负数表示具有相反意义的量.

知识点2:有理数的概念和分类:整数和分数统称有理数.有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数.

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴.

知识点4:绝对值的概念:

(1) 几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2) 代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念:

(1) 几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2) 代数意义:符号不同但绝对值相等的两个数叫做互为相反数.0的相反数是0.

知识点6:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数.

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大.

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小.

知识点7:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变.

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数.

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加纳袭法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算.

知识点11:乘法与除法

1.乘法法则

2.除法法则

3.多个非零的数相乘除最后结果符号如何确定

知识点12:倒数

1. 倒数概念

2. 如何求一个数的倒数?(注意与相反数的区别)

知识点13:乘方

1. 乘方的概念,乘方的结果叫什么?

2. 认识底数,指数

3. 正数的任何次幂是_________,零的任何次幂________

负数的偶次幂是和缺_________奇次幂是________

知识点14:混合计算

注意:运洞棚兄算顺序是关键,计算时要严格按照顺序运算.考试经常考带乘方的计算.

知识点15:科学记数法

科学记数法的概念? 注意a的范围

二次函数17个必背题型

一个没有几分诗人气的数学家永远成不了一个完全的数学家.下面给大家带来一些关于七年级数学上册知识点汇总,希望对大家有所帮助。

1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).

2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.

3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加

号的和的形式.

4、加减混合运算的方法和步骤

(1)将减法统一成加法,并写成省略加号的和的形式;

(2)运用加法的交换律和结合律,简化运算.

5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.

6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.

7、倒数:乘积是1的两个数互为倒数.

8、有理数的除法法则

(1)除以一个数等于乘以这个数的倒数;

(2)两数相除,同号得正,异号得负,并把绝对值相除;

(3)0除以任何一个不等于零的数,都得0.

9、乘方的有关概念

(1)求n个相同因数的积的世纤运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).

(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.

10、科学计数法

把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.

11、有理数的混合运算顺序

(1)先算乘方,再算乘除,最后算加减;

(2)同级运算,按照从左至右的顺序依次进行;

(3)如果有括号,就先算小括号,再算中括号,然后算大括号.

12、近似数:与实际很接近的数.

13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个

近似数精确到那一位.

14、计算器的组成:计算器的面板由显示器和按键组成.

第3章整式的加减

1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去简此更加简明,更具有普

遍意义.

2、用字母表示数后,字母的取值要根据实际情景来确定.

3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.

4、单独一个数或单独一个字母也是代数式.

5、列代数式的实质就是把文字语言转化为符号语言.

6、列代数式的一般方法有:

(1)抓住关键词,由关键词确定相应的运算符号;

(2)理清运算顺序,一般是先读的先算,必要时添上括号;

(3)较复杂的数量关系,可分段处理;

(4)根据实际问题中的基本数量关系或公式列代数式.

7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.

8、求代数式的值的步骤:先代入,再求值.

9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.

10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.

11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母

的项叫做常数项.

12、在多项式里,最高次项的次数就是这个多项式的次数.

13、单项式和多项式统称为整式.

14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个

字母的降幂排列.

15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个

字母的升幂排列.

16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.

17、把多项式中的同类项合并成一项,叫做合并同类项.

18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

19、去括号法则:

(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;

(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;

20、添括号法则:

(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;

(2)所添括号前面是“—”号,括到括号里的搜咐仿各项改变正负号;

21、整式加减的一般步骤:先去括号,再合并同类项.

第4章生活中的立体图形

1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分

为圆锥和棱锥

2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的

图,即视图.

3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称

为侧视图,依观看的方向不同,有左视图和右视图.

4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据

俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.

5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.

6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.

7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.

8、在多边形中,最基本的图形是三角形.

9、两点之间线段最短.

10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.

11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.

12、把一条线段分成两条相等线段的点,叫做这条线段的中点.

13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转

而成的图形.

14、角的表示方法

(1)当顶点处只有一个角时,用一个大写字母表示;

(2)用三个大写字母表示,注意顶点字母必须写在中间;

(3)用希腊字母或阿拉伯数字表示.

15、角的大小比较:

(1)“形的比较”——叠合法;

(2)“数的比较”——度量法.

16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的

角平分线.

17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),

就说这两个角互为补角.

18、同角(或等角)的余角相等;同角(或等角)的补角相等.

第5章相交线与平行线

1、对顶角相等.

2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.

3、直线外一点与直线上各点连接的所有线段中,垂线段最短.

4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位

于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.

5、在同一平面内不相交的两条直线叫做平行线.

6、经过直线外一点,有1条直线与这条直线平行.

7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

8、平行线的判定方法

(1)同位角相等,两直线平行;

(2)内错角相等,两直线平行;

(3)同旁内角互补,两直线平行;

(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;

(5)在同一平面内,垂直于同一条直线的两条直线互相平行.

9、平行线的性质

(1)两直线平行,同位角相等;

(2)两直线平行,内错角相等;

(3)两直线平行,同旁内角互补.

第1章走进数学世界

1、数学伴我们成长,测量、称重、计算等都与数学有关.

2、数学与现实生活密切联系,人类离不开数学.

3、人人都能学好数学.

第2章有理数

1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表

示具有相反意义的量.

2、正数和负数

(1)正数都大于零;

(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;

(3)0既不是正数也不是负数,它是正数和负数的分界点.

3、有理数

(4)有理数:正数和分数统称为有理数;

(5)整数包括正整数、0、负整数;

(6)分数包括正分数、负分数.

4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.

5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.

6、有理数的大小比较

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

7、相反数的意义

(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;

(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.

8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.

9、绝对值的意义

(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;

(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.

10、绝对值的非负性:对于任何有理数a,都有|a|≥0.

11、两个负数的大小比较法则:两个负数,绝对值大的反而小.

12、有理数大小的比较方法

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

两个正数,绝对值大的数大;两个负数绝对值大的数反而小.

13、有理数的加法法则

(1)同号两数相加,取加数的符号,并把绝对值相加;

(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;

(3)互为相反数的两个数相加得0;

(4)一个数同0相加仍得这个数.

14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.

15、有理数的加法运算律

(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)

(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)

16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.

七年级数学上册知识点汇总相关文章:

★初一数学上册知识点归纳

★初一上册数学知识点归纳整理

★初一数学上册重点知识整理

★初一数学上册基本概念汇总与学习方法

★七年级上册数学知识点总结三篇

★七年级数学知识点整理大全

★初中七年级数学知识点归纳整理

★初一数学有理数知识点

★七年级上册数学全册概念总结复习

★初一年级上册数学的21个热门知识点

初一数学上册课程目录

七年级上册数学书重要内容:

(一)有理数。

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。

(3)相反数:相反数是一个数学术语,指值相等,正负号相反的两个数互为相反数。

(4)值:值是指一个数在数轴上所对应点到原点的距离。正数的值是它本身,负数的值是它的相反数;0的值是0,两个负数,值大的反而小。

(5)有理数的加减法。

同号相加,到相同符号,并把值相加。异号相加,取值大的加数的符号,并用较大的值减去较小的值。

(6)有理数的乘法。

两数相乘,同号得正,异号得负,并把值相乘。

任何数与0相乘,积为0. 例:0×1=0

(7)有理数的除法。除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把值相除。0除

以任何一个不为0的数,都得0。

(8)有理数的乘方。求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

(二)整式

(1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

以上就是七年级上册数学内容的全部内容,七年级上册数学书重要内容:(一)有理数。(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(2)数轴:在数学中,可以用一条直线上的点表示数。

猜你喜欢