当前位置: 首页 > 如何自学 > 初中 > 七年级 > 初一

北师大版七年级数学下册,北师大初一数学下册电子课本

  • 初一
  • 2023-05-31
目录
  • 初一下册数学课程北师大版
  • 北师大初一数学下册电子课本
  • 北师大版七年级数学上册电子课本
  • 七下数学北师大版电子版2022
  • 北师大数学七年级下册知识点

  • 初一下册数学课程北师大版

    做七年级数学课本练习不知道疲倦是有智慧的表现;我整则伏理了关于北师大版七年级数学下册课本的答案,希望对大家有帮助!

    七年级数学下册课本答案北师大版(一仔盯帆)

    第6页

    七年级数学下册课本答案北师大版(二)

    第8页

    1.解:(1)(-3n)³=(-3)³n³=-27n³.

    (2)(5xy)³=5³•x³y³=125x³y³.

    (3)-a³+(-4a)²a=-a³+(-4)²•a²•a=-a³+16a³=15a³.

    2.解:地球可以近似地看作是球体,如果用V,r分别表示求得体积和半径,那么V=4/3 πr³.

    七年级数学下册课本答案北师大念雹版(三)

    第11页

    七年级数学下册课本答案北师大版(四)

    北师大初一数学下册电子课本

    北师大版初中数学定理知识点汇总[七年级下册(北师大版)]

    第一章整式的运算

    一. 整式

    ※1. 单项式

    ①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

    ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

    ③一个单项式中,所有字母的指数和叫做这个单项式的次数.

    ※2.多项式

    ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

    ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

    ※3.整式单项式和多项式统称为整式.

    二. 整式的加减

    ¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

    ¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

    三. 同底数幂培春升的乘法

    ※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

    ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

    ②指数是1时,不要误以为没有指数;

    ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

    ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

    ⑤公式还可以逆用: (m、n均配老为正整数)

    四.幂的乘方与积的乘方

    ※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

    ※2..

    ※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

    如将(-a)3化成-a3

    ※4.底数有时形式不同,但可以化成相同。

    ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

    ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

    ※7.幂的乘方与积乘方法则均可逆向运用。

    五. 同底数幂的除法

    ※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).

    ※2. 在应用时需要注意以下几点:

    ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

    ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

    ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

    ④运算要注意运算顺序.

    六. 整式的乘法

    ※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

    单项式乘法法则在森厅运用时要注意以下几点:

    ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

    ②相同字母相乘,运用同底数的乘法法则;

    ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

    ④单项式乘法法则对于三个以上的单项式相乘同样适用;

    ⑤单项式乘以单项式,结果仍是一个单项式。

    ※2.单项式与多项式相乘

    单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

    单项式与多项式相乘时要注意以下几点:

    ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

    ②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

    ③在混合运算时,要注意运算顺序。

    ※3.多项式与多项式相乘

    多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

    多项式与多项式相乘时要注意以下几点:

    ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

    ②多项式相乘的结果应注意合并同类项;

    ③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

    七.平方差公式

    ¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

    ※即 。

    ¤其结构特征是:

    ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

    ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

    八.完全平方公式

    ¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

    ¤即 ;

    ¤口决:首平方,尾平方,2倍乘积在中央;

    ¤2.结构特征:

    ①公式左边是二项式的完全平方;

    ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

    ¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。

    九.整式的除法

    ¤1.单项式除法单项式

    单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

    ¤2.多项式除以单项式

    多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

    第二章 平行线与相交线

    一.台球桌面上的角

    ※1.互为余角和互为补角的有关概念与性质

    如果两个角的和为90°(或直角),那么这两个角互为余角;

    如果两个角的和为180°(或平角),那么这两个角互为补角;

    注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

    它们的主要性质:同角或等角的余角相等;

    同角或等角的补角相等。

    二.探索直线平行的条件

    ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

    ①同位角相等,两直线平行;

    ②内错角相等,两直线平行;

    ③同旁内角互补,两直线平行。

    三.平行线的特征

    ※平行线的特征即平行线的性质定理,共有三条:

    ①两直线平行,同位角相等;

    ②两直线平行,内错角相等;

    ③两直线平行,同旁内角互补。

    四.用尺规作线段和角

    ※1.关于尺规作图

    尺规作图是指只用圆规和没有刻度的直尺来作图。

    ※2.关于尺规的功能

    直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

    圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

    第三章生活中的数据

    ※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

    ¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

    ¤3.统计工作包括:

    ①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

    第四章 概率

    ¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。

    ※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。

    ※3.了解必然事件和不可能事件发生的概率。

    必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0

    ※4.了解几何概率这类问题的计算方法

    事件发生概率=

    第五章 三角形

    一.认识三角形

    1.关于三角形的概念及其按角的分类

    由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    这里要注意两点:

    ①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

    ②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

    三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

    2.关于三角形三条边的关系

    根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

    三角形三边关系的另一个性质:三角形任意两边之差小于第三边。

    对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

    设三角形三边的长分别为a、b、c则:

    ①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

    ②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

    3.关于三角形的内角和

    三角形三个内角的和为180°

    ①直角三角形的两个锐角互余;

    ②一个三角形中至多有一个直角或一个钝角;

    ③一个三角中至少有两个内角是锐角。

    4.关于三角形的中线、高和中线

    ①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

    ②任意一个三角形都有三条角平分线,三条中线和三条高;

    ③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

    ④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

    二.图形的全等

    ¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

    四.全等三角形

    ¤1.关于全等三角形的概念

    能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

    所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

    ※2.全等三角形的对应边相等,对应角相等。

    ¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。

    五.探三角形全等的条件

    ※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

    ※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

    ※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

    ※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

    六.作三角形

    1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。

    2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。

    3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。

    八.探索直三角形全等的条件

    ※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。

    ※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。

    直角三角形的其他判定方法可以归纳如下:

    ①两条直角边对应相等的两个直角三角形全等;

    ②有一个锐角和一条边对应相等的两个直角三角形全等。

    ③三条边对应相等的两个直角三角形全等。

    第七章生活中的轴对称

    ※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

    ※2.角平分线上的点到角两边距离相等。

    ※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。

    ※4.角、线段和等腰三角形是轴对称图形。

    ※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

    ※6.轴对称图形上对应点所连的线段被对称轴垂直平分。

    ※7.轴对称图形上对应线段相等、对应角相等。

    九.整式的除法

    ¤1.单项式除法单项式

    单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

    ¤2.多项式除以单项式

    多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

    第二章 平行线与相交线

    一.台球桌面上的角

    ※1.互为余角和互为补角的有关概念与性质

    如果两个角的和为90°(或直角),那么这两个角互为余角;

    如果两个角的和为180°(或平角),那么这两个角互为补角;

    注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

    它们的主要性质:同角或等角的余角相等;

    同角或等角的补角相等。

    二.探索直线平行的条件

    ※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

    ①同位角相等,两直线平行;

    ②内错角相等,两直线平行;

    ③同旁内角互补,两直线平行。

    三.平行线的特征

    ※平行线的特征即平行线的性质定理,共有三条:

    ①两直线平行,同位角相等;

    ②两直线平行,内错角相等;

    ③两直线平行,同旁内角互补。

    四.用尺规作线段和角

    ※1.关于尺规作图

    尺规作图是指只用圆规和没有刻度的直尺来作图。

    ※2.关于尺规的功能

    直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

    圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

    第三章生活中的数据

    ※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。

    ¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

    ¤3.统计工作包括:

    ①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

    第四章 概率

    ¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。

    ※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。

    ※3.了解必然事件和不可能事件发生的概率。

    必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0

    ※4.了解几何概率这类问题的计算方法

    事件发生概率=

    第五章 三角形

    一.认识三角形

    1.关于三角形的概念及其按角的分类

    由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    这里要注意两点:

    ①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

    ②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

    三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

    2.关于三角形三条边的关系

    根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

    三角形三边关系的另一个性质:三角形任意两边之差小于第三边。

    对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

    设三角形三边的长分别为a、b、c则:

    ①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

    ②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

    3.关于三角形的内角和

    三角形三个内角的和为180°

    ①直角三角形的两个锐角互余;

    ②一个三角形中至多有一个直角或一个钝角;

    ③一个三角中至少有两个内角是锐角。

    4.关于三角形的中线、高和中线

    ①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

    ②任意一个三角形都有三条角平分线,三条中线和三条高;

    ③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

    ④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

    二.图形的全等

    ¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

    四.全等三角形

    ¤1.关于全等三角形的概念

    能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

    所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

    ※2.全等三角形的对应边相等,对应角相等。

    ¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。

    五.探三角形全等的条件

    ※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

    ※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

    ※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

    ※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

    六.作三角形

    1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。

    2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。

    3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。

    八.探索直三角形全等的条件

    ※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。

    ※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。

    直角三角形的其他判定方法可以归纳如下:

    ①两条直角边对应相等的两个直角三角形全等;

    ②有一个锐角和一条边对应相等的两个直角三角形全等。

    ③三条边对应相等的两个直角三角形全等。

    第七章生活中的轴对称

    ※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

    ※2.角平分线上的点到角两边距离相等。

    ※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。

    ※4.角、线段和等腰三角形是轴对称图形。

    ※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

    ※6.轴对称图形上对应点所连的线段被对称轴垂直平分。

    ※7.轴对称图形上对应线段相等、对应角相等。

    北师大版七年级数学上册电子课本

    这篇关于北师大版七年级下册数学期末试卷及答案大全,是特地为大家整理的,希望对大家有所帮助!

    一、细心填一填(本大题共12小题,每小题3分,共36分,直接把答案填在题中的横线上)

    1.如图,在直线a、b、c中,a∥b,若∠1=700,则∠2=___________.

    2.如图,直线AB与CD相交于点O,OE⊥CD,∠BOD=1200,则∠AOE=_______.

    3.如图,在△ABC中,∠B,∠C的平分线交于点O,若∠A=60°,则∠BOC=_______度.

    c

    4.如图,是根据某镇2004年至2008年工业生产总值绘制的折线统计图,观察统计图可得:增长幅度的年份比它的前一年增加 亿元.

    5.把点P(2,-1)向右平移3个单位长度后得到点P 的坐标是_______.

    6.已知点A(3,-4),则点A到y轴的距离是_________.

    7. 等腰三角形两条边的长分别为7、3,那么它的第三边的长是_________.

    8.关于 的方程 的解是非负数,则 的取值范围是 .

    9.“ 的一半与2的差不大于 ”所对应的不等式是 .

    10.在一个样本中,50个数据分别落在5个小组内,第1、3、4、5小组的频数分别

    是神族掘3,19,15,穗亩5,则第2小组的频数是_______.

    11. 写出一个以 为解的二元一次方程组是___________.

    12. 如图,下列用黑白两种正方形进行镶嵌的图案中,第n个图案白色正方形有_______个.

    七年级数学 共6页,第1页

    二、精心选一选(本大题共6小题,每小题4分,共24分.每小题给出的四个选项中,有且只有一个选项是正确的,请把正确选项的字母填入该题的括号内)

    13.在平面直角坐标系中,点(-1,1)在( )

    A.第一象限B.第二象限C.第三象限D.第四象限

    14.以下适合全面调查的是( )

    A.了解全国七年级学生的视力情况 B.了解一批灯泡的使用寿命

    C.了解一个班级的数学考试成绩 D.了解涵江区的家庭人均收入

    15.已知a>b,则下列不等式正确的是( )

    A. 2a>2b B .-2a >-2b C.2-a >2-b D. >

    16.关于x、y的方程组 的解为 ,则 的值是( )

    A.-2 B .-1 C.0 D.1

    17. 如图 点E在AC的延长线上,下列条件中能判断AB∥CD的是( )

    A. ∠3=∠4 B. ∠1=∠2 C. ∠D=∠DCE D.∠D+∠ACD=1800

    第17题 第18题

    18.如图,在△ABC中,∠A=50°,D、E分别是AB、AC边上的点,沿着DE剪下三角形的一角,得到四边形BCED,那么∠1+∠2等于( )

    A. 120 0 B. 150 0 C. 220 0 D. 230 0

    三.耐心做一做(本大题共11小题,共90分,解答应写出必要的文字说明,证明过程或演算步骤)

    19.(6分)解方程组: 20.(6分)解不等式组:

    并把解集在数轴上表示出来。

    七年级数学 共6页,第2页

    21.(6分)如图,用4个相同的小长方形与1个小正方形镶嵌成正方形图案,已知该图案的周长为28,小正方形的周长为12,若用x、y表示长方形的两边的长(x>y),求x、y的值。

    22.(8分)如图,BC与DE相交于O点,给出下列三个论断:①∠B=∠E,②AB∥DE,③BC∥EF.

    请以其中的两个论断为条件,一个论断为结论,编一道证明题,并加以证明。

    已知: (填序号)

    求证: (填游核序号)

    证明:

    23. (8分)(1)如图1,将一副三角板叠放在一起,使两条直角边分别重合,AB与CD相交于E.

    求:∠AEC的度数;

    (2)如图2,△COD保持不动,把△AOB绕着点O旋转,使得AO∥CD,求∠AOC的度数。

    七年级数学 共6页,第3页(背面还有试题)

    24.(8分)学习了统计知识后,小刚就本班同学的上学方式进行了一次调查统计.图1和图2是他通过采集数据后,绘制的两幅不完整的统计图。请你根据图中提供的信息,解答以下问题:

    (1)求该班的学生人数;

    (2)在图1中,将表示“步行”的部

    分补充完整;

    (3)在图2中,计算出“步行”、

    “骑车”部分所对应的百分比;

    (4)如果全年级共500名同学,请你

    估算全年级步行上学的学生人数。

    25.(8分)一次数学测验,共25道选择题,评分标准为:答对一道题得4分,答错一道题得-1分,没答得0分。某个同学有1道题没答,若想要分数不低于80分,那么他至少要答对多少道题?

    26. (8分) 如图,在△ABC中,D、E分别是AB、AC边上的点,沿着DE折叠三角形,顶点A恰好落在点C(点A )处,且∠B=∠BCD.

    (1)判断△ABC的形状,并说明理由;

    (2)求证:DE∥BC。

    七年级数学 共6页,第4页

    27.(10分)下列图形是用钉子把橡皮筋紧钉在墙壁上而成的,其中AB∥CD.

    ⑴ 如图1,若∠A=30 、∠C=50 ,则∠AEC=_________;

    ⑵ 如图2,若∠A=x 、∠C=y ,则∠AEC= (用含x 、y 的式子表示);

    ⑶ 如图3,若∠A=m 、∠C=n ,那么∠AEC与m 、n 之间有什么数量关系?请加以证明。

    28.(10分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为

    A(3,0)、C(0,2),点B在第一象限。

    (1) 写出点B的坐标;

    (2) 若过点C的直线交长方形的0A边于点D,且把长方形OABC的周长分成2 :3两部分,求点D的坐标;

    (3) 如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C D ,在平面直角坐标系中画出三角形CD C ,并求出它的面积。

    七年级数学 共6页,第5页

    29.(12分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:

    (总利润=单件利润×销售量)

    (1)该商场第1次购进A、B两种商品各多少件?

    (2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元?

    七年级数学 共6页,第6页

    七年级数学下学期末质检参考答案(评分细则)

    一:1. 70 2. 30 3. 120 4.20 5. P (5,-1) 6. 3 7. 7 8. m ≥-1

    9. 10. 8 11. (答案不) 12. 3n+1

    二: 13. B 14. C 15. A 16. C 17. B 18. D

    三:19. 解方程组: 20.解不等式组:

    并把解集在数轴上表示出来

    解: ②+①得:6x=66, x=11 ……2分 解:解不等式①得:x<4 ……2分

    把x=11代入①得:3×11+2y=47……4分 解不等式②得:x>1 ……4分

    y=7 ……5分 所以原不等式组的解集为:1

    所以原方程组的解是 ……6分 ……6分

    21.解:根据题意得: ……3分 解得 ……6分

    22.有三种:

    第1种: 第2种: 第3种:

    已知:①、② 已知:①、③ 已知:②、③

    求证:③ …3分 求证:② …3分 求证:① …3分

    证明:∵AB∥DE …4分 证明:∵BC∥EF …4分 证明:∵AB∥DE …4分

    ∴∠B=∠DOC…5分 ∴∠DOC=∠E…5分 ∴∠B=∠DOC …5分

    又∵∠B=∠E …6分 又∵∠B=∠E …6分 ∵BC∥DE …6分

    ∴∠DOC=∠E…7分 ∴∠B=∠DOC…7分 ∴∠DOC=∠E …7分

    ∴BC∥DE …8分 ∴AB∥DE …8分 ∴∠B=∠E …8分

    23. 解:(1)∵∠OAB=∠C+∠AEC …1分 (2)∵AO∥CD …5分

    ∠OAB=60 ,∠C=45 …2分 ∴∠AOC=∠C…6分

    ∴60 =45 +∠AEC …3分 又∵∠C=45 …7分

    ∴∠AEC=15 …4分 ∴∠AOC=45 …8分

    24.每小题2分(1) 40名 (2) 8名 (3)步行20%、骑车30% (4)500×20%=100(名)

    25.解:设这位同学答对x道题。 ……1分 根据题意得:4x-(25-1-x)≥80 ……4分

    解得x≥ ,不等式的最小整数解是21,…7分 所以这位同学至少要答对21题。…8分

    26. (1) △ABC是直角三角形。……1分

    ∵∠ACB=∠ACD+∠BCD ∠ACD=∠A ,∠BCD=∠B ∴∠ACB=∠A+∠B ……3分

    又∵∠ACB+∠A+∠B=180 ……4分 ∴2∠ACB==180 , ∠ACB==90 ……5分

    (2)由(1)可知:∠ACB==90 , ∵∠DEA=∠DEC= 180 =90 ……6分

    ∴∠DEA=∠ACB……7分 ∴DE∥BC……8分

    27. 第(1)、(2)题,每小题2分,第(3)小题6分

    (1) ∠AEC=80 , (2) ∠AEC=360 -x -y

    (3)∠AEC= n - m …2分

    证明: ∵AB∥CD, ∠C=n …3分 ∴∠EFB= ∠C=n …4分

    又∵∠EFB=∠A+∠AEC,∠A=m …5分 ∴n = m +∠AEC

    ∴∠AEC= n - m …6分

    28.(1)B(3,2)…2分

    (2)长方形OABC的周长为10. …3分

    点D在OA边上,把长方形OABC的周长

    分成2 :3两部分。 ∵OC+OA=5<6 ∴只能OC+OD=4

    又∵OC=2 ∴OD=4-2=2 D(2,0) …5分

    (3)三角形C D C 如图…7分

    CC =3 D (2,-3) …8分

    三角形C D C 的面积为: …10分

    29.解:(1)设购进A种商品x件,B种商品y件。……1分

    根据题意得: ……4分

    解得: ……6分 所以购进A种商品200件,B种商品150件。……7分

    (2)设B种商品的售价为m元/件。……8分

    根据题意得: ……10分

    解得:m≥1100……11分

    答:B种商品的最低售价为1100元/件。……12分

    七下数学北师大版电子版2022

    北师大版的七年级数学的期末考试可以衡量你平时的学习情况。我整理了关于北师大版七年级数学下册期末试卷及参考答案,希望对大家有帮助!

    北师大版七年级数学下册期末试卷题目

    试卷满分:100分,考试时间:100分钟

    一、选择题(本题共30分,每小题3分)

    下面各题均有四个选项,其中只有一个是符合题意的.

    1.9的平方根是( ).

    A. B. C. D.

    2.计算 的结果是( ).

    A.B.C.D.

    3.下列调查中,适宜采用全面调查方式的是( ).

    A. 调查春节联欢晚会在北京地区的收视率

    B. 了解全班同学参加社会实践活动的情况

    C. 调查某品牌食品的蛋白质含量

    D. 了解一批手机电池的使用寿命

    4.若 ,则点P( , )所在的象限是( ).

    A.第一象限 B.第二象限C.第三象限 D.第四象限

    5.下列各数中的无理数是( ).

    A.B.C. D.

    6.如图,直线a∥b,c是截线.若∠2=4∠1,

    则∠源御1的度数为( ).

    A.30° B.36° C.40° D.45°

    7.若 ,则下列不等式中,正确的是( ).

    A. B.

    C. D.

    8.下列命题中,真命题是( ).

    A.相等的角是对顶角

    B.同旁内角互补

    C.平行于同一条直线的两条直线互相平行

    D.垂直于同一条直线的两条直线互相垂直

    9.若一个等腰三角形的两边长分别为4和10 ,则这个三角形的周长为( ).

    A.18 B.22C.24 D.18或24

    10.若关于 的不等式 的解集是 ,则关于 的不等式 的解集是( ).

    A.B.C. D.

    二、填空题(本题共22分,11~15题每小题2分,16~18题每小 题4分)

    11.语句“x的3倍与10的和小于或等于7”用不等式表示为 .

    12.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.

    若∠EOD=20°,则∠COB的度数为 °.

    13.一个多边形的每一个外角都等于40°,则它的边数为 .

    14.若 ,且a,b是两个连续的整数,则 的值为 .

    15.在直角 三角雹物岩形ABC中,∠B=90°,则它的三条边AB,AC,BC中,最长的边是 .

    16.服装厂为了估计某校七年级学生穿每种尺码校服的人数,从该校七年级学生中随机抽取了50名学生的身高数据(单位:cm),绘制成了下面的频数分布表和频数分布直方图.

    (1)表中 = , = ;

    (2)身高 满足 的校服记为L号,则需要订购L号校服的学生占被调查学生的百分数为 .

    17.在平面直角坐标系中,点A的坐标为( , ).若线段AB∥x轴,且AB的长为4,则点B的坐标为 .

    18.在平面直角坐标系xOy中,蚂缓直线l经过点A( , ),

    点A1,A2,A3,A4,A5,……按如图所示的规律排列

    在直线l上.若直线l上任意相邻两个点的横坐标都相

    差1、纵坐标也都相差1,则A8的坐标为 ;

    若点An( 为正整数 )的横坐标为2014,则 = .

    三、解答题(本题共18分,每小题6分)

    19.解不等式组

    解:

    20.已知:如图,AB∥DC,AC和BD相交于点O, E是CD上一点,F是OD上一点,且∠1=∠A.

    (1)求证:FE∥OC;

    (2)若∠B=40°,∠1=60°,求∠OFE的度数.

    (1)证明:

    (2)解:

    21.先化简,再求值: ,其中 , .

    解:

    四、解答题(本题共11分,第22题5分,第23题6分)

    22.某校学生会为了解该校同学对乒乓球、羽毛球、排球、 篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选 取了若干名同学进行抽样调查,并将调查结果绘制成了如图1,图2所示的不完整的统计图.

    (1)参加调查的同学一共有______名,图2中乒乓球所在扇形的圆心角为_______°;

    (2)在图1中补全条形统计图(标上相应数据);

    (3)若该校共有2400名同学,请根据抽样调查数据估计该校同学中喜欢羽毛球运动的人数.

    (3)解:

    23.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A( , ),

    B( , ),C( , ).将△ABC向右平移5个单位长度,再向下平移4个单位长度,得到△ ,其中点 , , 分别为点A,B,C的对应点.

    (1)请在所给坐标系中画出△ ,并直接写出点 的坐标;

    (2)若AB边上一点P经过上述平移后的对应点为 ( , ),用含 , 的式子表示

    点P的坐标;(直接写出结果即可)

    (3)求△ 的面积.

    解:(1)点 的坐标为 ;

    (2)点 P的坐标为 ;

    (3)

    五、解答题(本题共19分,第25题5分,第24、26题每小题7分)

    24.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得m分,回答错误或放弃回答扣n分.当甲、乙两人恰好都答完12个题时,甲答对了9个题,得分为39分;乙答对了10个题,得分为46分.

    (1)求m和n的值;

    (2)规定此环节得分不低于60分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?

    解:

    25.阅读下列材料:

    某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为 点M,N.求证: .

    他发现,连接AP,有 ,即 .由AB=AC,可得 .

    他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是: .

    请回答:

    (1)请补全以下该同学证明猜想的过程;

    证明:连接AP.

    ∵ ,

    ∴ .

    ∵AB=AC,

    ∴ .

    (2)参考该同学思考问题的方法,解决下列问题:

    在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC 所在平面上一点,PM,PN,PQ分别与直 线AB,AC,BC垂直,垂足分别为点M,N,Q.

    ①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是: ;

    ②若点P在如图4所示的位置,利用图4探究得出此时BD,PM,PN,PQ之间的数量关系是: .

    26. 在△ABC中,BD,CE是它的两条角平分线,且BD,C E相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.

    (1)如图1,若 ∠A=110°,∠BEC=130°,则∠2= °,∠3-∠1= °;

    (2)如图2,猜想∠3-∠1与∠A的数量关系,并证明你的结论;

    (3)若∠BEC= ,∠BDC= ,用含 和 的代数式表示∠3-∠1的度数.(直接写出结果即可)

    解:(2)∠3-∠1与∠A的数量关系是: .

    证明:

    (3)∠3-∠1= .

    北师大版七年级数学下册期末试卷参考答案

    一、选择题(本题共30分,每小题3分)

    二、填空题(本题共22分,11~15题每小题2分,16~18题每小题4分)

    11. . 12.110. 13.九. 14.11. 15. AC.

    16.(1)15,5;(2)24%.(阅卷说明:第1个空1分,第2个空1分,第3个空2分 )

    17. 或 . (阅卷说明:两个答案各2分)

    18. ,4029. (阅卷说明:每空2分)

    三、解答题(本题共18分,每小题6分)

    19.解:

    解不等式①,得 . …………………………………………………………………2分

    解不等式②,得 . ………………………………………………………………4分

    把不等式①和②的解集在数轴上表示出来.

    所以原不等式组的解集为 . …………………………………………………6分

    20.(1)证明:∵AB∥DC,

    ∴∠A=∠C. …………………………………1分

    ∵∠1=∠A,

    ∴∠1=∠C. …………………………………2分

    ∴FE∥OC. …………………………………3分

    (2)解:∵AB∥DC,

    ∴∠D=∠B. …………………………………………………………………4分

    ∵∠B=40°,

    ∴∠D=40°.

    ∵∠OFE是△DEF的外角,

    ∴∠OFE=∠D+∠1, …………………………………………………………5分

    ∵∠1=60°,

    ∴∠OFE=40°+60°=100°. ……………………………………………………6分

    21.解:

    ………………………………………………… 3分

    . …………………………………………………………………………… 4分

    当 , 时,

    原式 …………………………………………………………………… 5分

    . …………………………………………………………………………6分

    四、解答题(本题共11分,第22题5分,第23题6分)

    22.解:(1)200,72; …………………… 2分

    (2)如右图所示; ………………… 4分

    (3) (人).

    …………………… 5分

    答:估计该校2400名同学中喜欢

    羽毛球运动的有288人.

    23.解:(1)△ 如右图所示, ………………… 2分

    点 的坐标为( , ); …………… 3分

    (2)点P的坐标为( , ) ;

    ……………………… 4分

    (3)过点 作 H⊥ 轴于点H,

    则点H的坐标为( , ).

    ∵ , 的坐标分别为( , ),( , ),

    . ……………………………………………………………… 6分

    五、解答题(本题共19分,第25题5分,第24、26题每小题7分)

    24.解:(1)根据题意,得 ……………………………………… 2分

    解得 ………………………………………………………………… 3分

    答:m的值为5,n的值为2.

    (2)设甲在剩下的比赛中答对 个题. ………………………………………… 4分

    根据题意,得 . ……………………………… 5分

    解得 . ………………………………………………………………… 6分

    ∵ 且 为整数,∴ 最小取6. …………………………………… 7分

    而 ,符合题意.

    北师大数学七年级下册知识点

    一、 概念知识1、 单项式:数字与字母的积,叫做单项式。2、 多项式:几个单项式的和,叫做多项式。3、 整式:单项式和多项式统称整式。4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。6、 余角:两个角的和为90度,这两个角叫做互为余角。7、 补角:两个角的和为180度,这两个角叫做互为补角。8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。9、 同位角:在“三线八角”中,位置相同的角,就是同位角。10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。18、全等图形:两个能够重合的图形称为全等图形。19、变量:变化的数量,就叫变量。20、自变量:在变化的量中主动发生变化的,变叫自变量。21、因变量:随着自变量变化而被动发生变化的量,叫因变量。烂吵中22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。23、对称轴:轴对称图形中对折的直线叫做对称轴。24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)二、 计算能力(A) 整式的计算。1、 整式的加减去括号,合并同类项!2、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。②幂的乘方:底数不变,指数相乘。 ③积的乘方:等于每个因数乘方的积。④同指数幂相乘:指数不变,底数相乘。 ⑤同底数幂相除:底数不变,指数相减。⑥零指数:任何非零数的0次方等于1。 ⑦负指数:任何非零数的负指数等于它的正指数的倒数。 3、 乘法公式① 平方差公式:平方差,平方差;两数和乘两数差。 ② 完全平方公式:首平方,尾平方;首尾2倍在中央。附:⑴三数和的完全平方: ⑵立方和:⑶立方差: 4、 整式的乘法① 单项式乘单项式:系数相乘,相同的字母相乘,不同的字母照写。② 单项式乘多项式:用单项式去乘多项式的每一项,再把结果相加。③多项式乘多项式:用第一个多项式的每一项去乘第二个多项式的每一项,再把结果相加。(握手原则)5、 整式的除法①单项式除以单项式:系数除以系数,相同的字母相除,只在被除式中出现的字母照写。②多项式除以单项式:用多项式的每一项去除以单项式,再把结果相加。(B) 角度的计算。1、 利用三角形的内角定理、外角定理来计算三角形的三个内角和为180度。一个外角等于和它不相邻的两个内角的和。2、 利用平行线的关系角来计算。3、 利用三角形的角平分线、高线来计算(C) 面积的计算1、 长方形的面积=长×高 或碰枝四个小三角形的面积之和(四个小三角形的面积相等)2、 正方形的面积=边长×边长或对角线相乘的一半。或四个全等小等腰直角三角形的面积和3、 三角形面积=底×高÷24、 直角三角形的面积=两直角边的积的一半 或斜边与斜边上的高的积的一半(D) 三角形线段的计算① 用特殊位置(中线、中点、中垂线)来计算② 用等腰三角形、全等三角形来计算③ 用三角形的边之间的关系来计算(E) 概率的计算1、 一般算法:2、面积算法: 三、 图形与操作1、 作三角形的高线、角平分线饥山、中线。(基本作图,见书本143~146页)2、 作轴对称图形。(找出关键点,用中垂线的方法来找对应点。)3、 作三角形。① 基本作图:⑴告诉三边⑵告诉两边夹角⑶告诉两角夹边(见书本169~171页)② 综合作图:⑴告诉两边及第三边上的中线⑵告诉两边及第三边上的高线⑶告诉两边及夹角的角平分线方法:2倍长关系线,构造全等三角形。4、 生活中的最短路程作图。(1) 在第三条直线上作到两点距离相等的点。(公路上建牛奶站,到两家人距离相等。作中垂线与公路相交。)(2) 在第三条直线上作到两点距离之和最短的点。(公路上建牛奶站,到两家人距离和最短。作一家关于公路对称的对应点,对应点与另一家的连线与公路的交点。)5、 平行的说明(证明)以“三线八角”为基础判定:同位角相等 性质:同位角相等 内错角相等两直线平行两直线平行 内错角相等 同旁内角互补 同旁内角互补6、 全等的说明(证明)判定: 三边对应相等 (SSS) 性质: 两边夹一角对应相等 (SAS)对应边相等 两角夹一边对应相等 (ASA)两个三角形全等全等三角形 两角及一角的对边对应相等 (AAS)对应角相等 直角边和斜边对应相等 (HL) 四、 数据与统计1、 科学记数法:数0法,左边有0,负指数;右边有0正指数。左边几个0,指数就是负几;右边几个0,指数先写成正几,然后指把a写成0~10之间的数,再修改指数。1毫米= 10-3米1微米=10 -6米 1纳米=10 -9米1平方毫米=10 -6平方米1立方微米=10 -18立方米2、 变量的三种表示方法:① 表格法:自变量在上,因变量在下② 关系式法:自变量在前,因变量在后③ 图像法:自变量是横轴,因变量是纵轴。3、图像的认识:主要分析变量是增还是减。五、 数学应用1、 光线的反射入射角等于反射角。入射角和反射角的余角也相等。如图:∠1和∠2是入射角和反射角,所以∠1=∠2∠3和∠4是∠1和∠2的余角,∠3=∠4 2、 用全等三角形测量距离构造全等三角形,把不能直接测量的线段,变来可以测量!如测湖泊、高山、瓶子内部等。3、 镜子的秘密:(1) 镜子中的像和镜子外的事物成轴对称,对称轴是镜面,有时是竖直的,有时是水平的。(2) 镜子里的时间+实际时间=12时六、 典型题集1、 几个非负数的和为0,这几个数都是0。已知:a2+b2-2a+6b+10=0,a2008+1/b=?2、 换底:(x-y)2n (y-x)n (y-x)=? 已知3x-4y+5=0,则8x÷16y=?3、 换指数:比较266和355的大小。0.1252006×82007=4、 完全平方的灵活运用:(1)求完全平方式中的一项或几项。已知:a+b=12,ab=30,可以求 (2) 隐藏一个条件:已知,求(3)两个条件都隐藏。已知:x2-5x+1=0求(4)求其他高次方的和。5、 平方差的运用。计算:(a-b+c)(a+b-c)6、 已知三角形的两边长为a和b,求第三边上的中线长。已知三角两边分别是4和10,求第三条边上中线的范围。 A 4? 10 先求出BC的范围:6~14之间。然后BD为3~7之间。(左边三角形ABD中AD的范围为1~11之间)BD C再分析DC也为3~7之间。(右边三角形ACD中AD的范围为7~17之间)综合两边AD应为7~11之间。7、 电话费的几种算法。(变量与关系式)某电话有两种计算方法:(1)座机费每月25元,话费每分钟0.1元。(B)不交座机费。话费每分钟0.2元。A、写出两种付费方法的总费用y(元)与时间x(分)的关系式。B、小明家本月要打300分钟电话,选哪种方式好,说明理由。C、打多少分钟时两种付费方式的钱一样多。8、 近似数的精确范围。求近似数2.46的精确范围 在精确度下正负0.5 左边大于或等于,右边是小于。9、 探索规律:(1)摆图形注意分好类!把具有相同特点的部分分为一类来计算。如粘纸张中的首尾为一类,中间为一类,粘合部分为一类。(2)粘纸张

    猜你喜欢