高二下学期数学学什么?高二下学期的数学学习内容主要包括以下几个方面:1、掌握必要条件、充分条件、充要条件的真值表:这部分内容是关于逻辑推理的基础知识,需要理解并掌握这些条件之间的逻辑关系。2、集合、集合的性质:包括集合的表示法、包含关系、相等关系等基本概念和性质。3、等差数列、那么,高二下学期数学学什么?一起来了解一下吧。
因为高二开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。我网高二频道为你整理了《高二数学重要知识点归纳》,助你金榜题名!
高二数学下册知识点
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是我为大家整理的高二数学下学期复习知识点,希望对大家有所帮助!
高二数学下学期知识点总结
一、直线与圆:
1、直线的倾斜角 的范围是
在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,
⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为
4、 , ,① ∥ , ; ② .
直线 与直线 的位置关系:
(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0
5、点 到直线 的距离公式 ;
两条平行线 与 的距离是
6、圆的标准方程: .⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①简配 相离② 相切③ 相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;
2、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线 或 c2=a2+b2
3、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .
2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即
3、模的计算:|a|= . 算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用:
三、直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。
导数,概率,排列组合,统计。
统计里要记公式
必修庆纤5:解三角形,数列,不等式。
选修2-1:常用逻辑用语,圆锥曲线与方程,空间向量与立猜贺体几何。
选修2-2:导数及其应用,推理与证明,数系的扩充与复数的引入。
选修2-3 :计数原理,随机变量及其分布,统计案例。
扩展资料:
随机抽样
①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽穗差派样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅资料、设计调查问卷等方法收集数据。
新课标高二数学学哪本书有两种选择:
1、人民教育出版社出版的《数学(高中必修)》:该教材是按照新课标要求编写的,包括了高中数学必修一、必修二和必修三的内容,总共分为三册。这套教材内容全面、系统,符合新课标要求。
2、北京师范大学出版社出版的《课标通用版高中数学》:这是另一套按照新课标编写的高中数学教材。与上述教材相比,该版本在内容组织和呈现方前兆式上可能会有一些区别,但同样覆盖了高中数学的必修内容。
高二数学的主要内容:
1、几何与向量:包括平面几何、空间几何以及向慧散租量的基本概念、运算和应用。学生将学习点、线、面的性质,几何证明与推理,向量的数量积和向量积等内容。
2、三角函数与解三角形:学习三角函数的基本性质、图像掘庆和变换,掌握解三角形的各种方法和技巧,包括正弦定理、余弦定理和正弦定理的扩展等。
3、数列与数列的极限:学习等差数列、等比数列以及一般数列的性质,掌握常见数列求和公式和通项公式,了解数列的极限概念和计算方法。
高二数学的学习方法
1、充分理解基础概念:高二数学是建立在初中数学基础上的,因此要确保对初中数学的基本概念和知识点有充分的理解和掌握。
天津的高二数学下学升旦期学习课本为:高粗笑皮中数学人教A版的选修22和选修23。
高中数学人教A版选修22学习内容:导数及其应用,推理与证明,数系的扩充和复数的引入。
高中数学人教A版选修23学习内容:计数原理,随机变量及其分布,二项分布及其岩差应用。
以上就是高二下学期数学学什么的全部内容,(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。