高二数学导数讲解?导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。那么,高二数学导数讲解?一起来了解一下吧。
导数作为研究函数的重要,也是进一步学习高二数学的基础,因此同学们需要掌握导数的重要知识点。下面我带来高二数学导数知识点,欢迎阅读!
高二数学导数知识点
1. 求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导, (1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数; (2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数; (3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单销轮调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x); ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来, 也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围): 设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2) 如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3) 如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
导数基础
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产孙蔽衫生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在并脊,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。
目录
高中导数知识点总结
高中数学的学习方法
如何提升高中数学成绩
高中导数知识点总结
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断旦友函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高中导数埋埋的定义
导数定义
一、导数第一定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
二、导数第二定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数弯困蚂变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义
三、导函数与导数
如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在尺逗区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y', f'(x), dy/dx, df(x)/dx。
以下是为大家整理的关于《高二数学说课稿:导数的概念》,供大家学习参考!
一、教材分析
导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。
问题1 气球平均膨胀率--→瞬时膨胀率
问题2 高台跳水的平均速度--→瞬时速度--→
根据上述教材结构与内容分析,立足学生的认知水平 ,制定如下教学目标和重、难点
二、 教学目标
1、 知识与技能:
通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程基败亩,了解导数概念的实际背景,知道瞬时变化率就是导数。
2、 过程与方法:
① 通过动手计算培养学生观察、分析、比较和归纳能力
② 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法
3、 情感、态度与价值观:
通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.
三、 重点、难点
重点:导数概念的形成,导数内涵的理解
难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点
四、 教学设想(具体如下表)
教学环节 教学内容 师生互动 设计思路创设情景、引入新课幻灯片
回顾上节课留下的思考题:
在高台跳水运动中,运动员相对水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t 2+6.5t+10.计算运动员在 这段时间里的平均速度,并思考下面的问题:
(1)运动员在这段时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态有什么问题吗?
首先回顾上节课留下的思考题:
在学生相互讨论,交流结果的基础上,提出 :大家得到运动员在这段时间内的平均速度为“0”,但我们知道运动员在这段时间内并没有“静止”。
以上就是高二数学导数讲解的全部内容,利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x); ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。