当前位置: 首页 > 如何自学 > 小学 > 五年级

五年级植树问题公式,植树问题的公式

  • 五年级
  • 2024-01-01

五年级植树问题公式?株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1)2、如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 3、那么,五年级植树问题公式?一起来了解一下吧。

植树问题公式是什么?

植树问题公式:

直线植树: 距离/间隔 +1 = 棵数 四周植树: 距离/间隔 = 棵数 楼间植树:单边植树 距离/间隔 -1=棵树 双边植树 ( 距离/间隔 -1)*2=棵树

关于《植树问题》现在的案例很多,但因为这是发展学生思维能力的课,所以怎样的教学目标定位才是适合学生的发展的,应该说是很难把握的。让学生对这一问题有一个整体的把握,即既要理解+1的原因,又要理解—1的原因,和不加不减的原因。

植树问题的公式

一共一共要栽树34颗。

植树问题公式:道路一旁植树(两端都植) :距离÷间隔长 +1=棵数

解答过程:

因为两颗树一个株距,三颗树二个株距,依此类推,有n棵树就有n-1个株距,那么知道道路长99米,株距3米,就可以计算有多少个株距,即99÷3=33,所以有33个株距,那么树的个数就应该用33+1=34(颗)

拓展资料

植树问题公式:

单边植树(两端都植) :距离÷间隔长 +1=棵数

单边植树(只植一端) :距离÷间隔长=棵数

单边植树(两端都不植) :距离÷间隔长- 1=棵数

双边植树(两端都植):( 距离÷间隔长+1)×2=棵数

双边植树(只植一端):( 距离÷间隔长)×2=棵数

双边植树(两端都不植):( 距离÷间隔长-1)×2=棵数

循环植树: 距离÷间隔数=棵数

一个果园长100米,要在一条路一旁植树,每隔5米栽

有如下:

1、如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1。

全长=株距×(株数-1)。

株距=全长÷(株数-1)。

2、如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距。

全长=株距×株数。

株距=全长÷株数。

3、如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1。

全长=株距×(株数+1)。

株距=全长÷(株数+1)。

应用题的解题思路:

(1)变题法有些应用题,条件比较复杂,解答时可以适当改变题里己知条件的表达方式,使数量关系更为明显,从而找到解题的途径。

(2)逆推法对于一些特定结构的应用题可以反向思考,从最后的结果出发,采取相逆的运算,从而探求解题思路。

五年级植树问题公式

植树问题公式:

一、非封闭线路上的植树问题主要可分为以下三种情形:

1、如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距+1

全长=株距×(株数-1)

株距=全长÷(株数-1)

2、如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

3、如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

二、封闭线路上的植树问题的数量关系如下:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

植树问题公式例题:

1、在一条长500米的小路一边每隔5米种一颗小树,需要几棵小树?

思考:这是最基本的植树问题,用总长500米除以间隔距离5米,得到的100就是间隔数,这个题目虽然没有告诉我们两端怎么样栽,但是根据经验知道,像这种情况是两端都载的,所以,间隔数100加1,就等于棵数。

500÷5=100 100+1=101(棵)

答:需要101棵小树。

2、一个圆形的操场周长是1000米,要在它的周围栽上树木,每隔5米栽一棵小树,共需要多少棵小树?

思考:这是封闭图形,棵数=间隔数。

植树问题的三个公式

植树问题的三个公式如下:

单边植树(两端都植):距离÷间隔数+1=棵树。

单边植树(只植一端):距离÷间隔数=棵树。

单边植树(两端都不植):距离÷间隔数-1=棵树。

双边植树(两端都植):(距离÷间隔数+1)×2=棵树。

双边植树(只植一端):(距离÷间隔数)×2=棵树。

双边植树(两端都不植):(距离÷间隔数-1)×2=棵树。

循环植树:距离÷间隔数=棵树。

植树问题解题思路:

1、沿路旁植树:

棵树=全长÷间隔+1。

间隔=全长÷(棵树-1)。

全长=间隔×(棵树-1)。

2、沿周长植树:

棵树=全长÷间隔。

间隔=全长÷棵树

全长=间隔×棵数。

特殊类型的植树问题:

面积植树棵数=面积÷(棵距×行距) 例题: 一个圆形池塘周长为400米,在岸边每隔4米栽一棵柳树,一共能栽多少棵柳树? 解: 400÷4=100(棵) 答:一共能栽100棵柳树。

像爬楼梯的层数问题、锯木头的段数问题、敲钟遇到的时间、排队问题都与植树问题类似。 爬楼梯的层数问题,主要是要明白几层楼和几层楼之间是不一致的,楼数要比楼梯层数+1。

例题: 蓉蓉住的这栋楼共7层,每层楼梯20节,她家住在5楼,你知道蓉蓉走多少节楼梯才能到自己住的那层吗? 解: 5-1=4(层) 20×4=80(级) 答:蓉蓉走80级楼梯才能到自己住的那一层。

以上就是五年级植树问题公式的全部内容,单边植树(两端都植):距离÷间隔数+1=棵树。单边植树(只植一端):距离÷间隔数=棵树。单边植树(两端都不植):距离÷间隔数-1=棵树。双边植树(两端都植):(距离÷间隔数+1)×2=棵树。

猜你喜欢