当前位置: 首页 > 上海自学网 > 初中 > 七年级 > 初一

初一期中数学,初一期中数学重点必考题

  • 初一
  • 2023-05-25
目录
  • 初一期中数学测试卷
  • 初一期中数学重点必考题
  • 初一期中数学试卷下册
  • 初一数学期中试卷免费及答案
  • 初一下册期中数学

  • 初一期中数学测试卷

    初一数学期中总结与反思1

    随着时间的转眼流逝,半学期已悄然过去,紧张的期中考试也已经画上一个句号。

    这次考试我有以下几点感受:

    第一,上课要多关注数学学习弱的学生,拿最简单的问题来鼓励他们;

    第二,课后作业时可以在作业中选择适合每个能力层次的学生的作业,让他们做作业要有成就感,让他们觉得自己今天学到东西。

    第三,对很有能力的学生可以给他们去思考一点较难的题目来提高他们学习数学更高的积极性。

    今后数学教学的措施:

    1、加强基本功训练,减少不必要的失分

    在数学评卷中我们发现,我班学生在解题思路、方法技巧上的水平并不低,而常常在一些基本环节上失分,这次特别体现在计算题中。因此在教学中要始终注意对学生加强基本功训练。要把运算的准确性训练落在实处,把解题速度的训练落在实处,把表述的简捷、准确性训练落在实处,把书写规范化的训练落在实处。

    2、加强学生解填空题的训练

    数学试卷中填空题所占分值不少(20分),而题目又多是基本题,因此对于考生来说这应该是拿分的一个好地方。但从前面的难度统计表中我们看到,不少考生从这块地盘上丧气而归。这主要是因为填空题只填最终结果,即使解题思路、过程正确,只要计算上出差错,或对结果的表述不合要求,就不能得分。因此,填空题这种只要结果不要过程的要求,对考生来说既有宽松的一面(可以不写过程),也有苛刻的一面(不能出错),不少人(包括部分教师)只注意到前者而忽略了后者,这正是造成填空题得分率不高的一个主要原因。对此,我们应该在提高学生运算的准确性和结果表述的规范化上下功夫。

    3、要提高“情景”题型的教学水平

    “情景”题型教学不能搞固定模式让学生照套,要让学生学会灵活运用已有的知识解决实际问题。不要总去搞一些陈题(当然不是说完全不要陈题),要把反映当今市场经济内容的材料作为背景编拟新题让学生去解决。教师图省事而照本宣科的教学显然已不适应今天的形势。

    4、在数学教学中加强思想教育

    分析结果表明,我班数学成绩两极分化现象比较突出。初中是义务教育,教学更应该强调面向全体学生。有的学生连有理数的加减的填空题也不会做。显然这绝不能把原因归结在这些学生的基础和大脑素质上,而是他们厌学,根本没有去学的结果。鉴于此,我们认为数学教师有责任在数学告磨衡教学中对学生加强思想教育,开导、鼓励后进学生,培养他们的数学兴趣。这样才能有效地缩小差生面,使我班的数学教学成绩再上一个新台阶。不久,我们将会迎来这学期的期末考试,相信学生们在经历每次考试后会点点滴滴茁壮成长的。

    初一数学期中总结与反思2

    “几百几十加减几百几十(笔算)”是在学生已经学习了“万以内数的认识”和“两位数加减两位数(口算)”的基础上进行教学的,起着承上启下的作用,为以后学习多位数笔算加减法奠定基础,构建计算方法。这是一堂计算教学课,传统数学教学上“计算”和“枯燥”、“机械”、“重复”相连,计算课往往只追求计算的熟练程度和准确率,算法单一,形式枯燥,只注重技能训练。新课标理念下的数学课堂,更多的把学习的空间、时间、主动权交换给学生,引导自主探究、合作交流,使孩子乐学、爱学。

    根据数学标准的理念,为让计算不再枯燥,我力求在教学中体现以下几点:

    1、创设有趣的情境,提出生活中的问题。

    在课堂教学中,我创造性的使用教材,出示学生熟悉的情境,通过教学“生活化”,使抽象的问题具体化。在学生了解图意之后,我让学生自己根据图意提出问题。

    2、提供学习空间,自主探究中的.计算。

    在教学算法时,我先引导孩子回忆以前学过的两位数加减两位数的笔算方法,然后再提出猜想“几百几十加、减几百几十的笔算是不是也一样呢。”接着学生四人小组合作探究几百几十加、减几百几十的笔算方法在讨论中经历问题的提出、分析、解决过程,理解算法,构袜做建方法,完善思路,升华想法,真正游或掌握算法,内化算理。

    3、设计层次练习,学以致用。

    练习要有层次性,练习的设计要由易到难,由浅入深,由单一到综合,要有一定的坡度。多层训练有利于暴露差异,发展学生的思维能力。为了实现这一想法,我设计了闯关练习,让不同层次的学生在学习数学上得到不同的收获。

    初一数学期中总结与反思3

    眨眼工夫,本学期已经过了一半了,期中考试也已经进行完毕。对于这次考试,我作一下总结。

    一、试卷分析

    本次期中考试试题题量适中,难易程度适中。试题共有六个大题,包括填空,选择,计算、因式分解、解方程组,几何说理和解答题等。本套试题有八十多分的基础知识,都是平时经常练习的,也有十分左右稍有一点难度的题。本试卷重点突出,概括全面,是考察学生基础知识和基本技能和基本思想方法的好试卷。

    二、考试成绩分析

    本次考试,我们班的成绩很不理想。尤其是11班优秀人数和平均分都较低,90分以上的七(7)班17个而七(11)班只有8个,不及格的一个班有10个另一个11个,可见同学们是退步了不少。

    三、学生方面分析

    从试卷上看,学生的失分主要表现在以下两方面:

    1. 学生做题不认真,做完不检查。计算和因式分解,是不应该丢这么多分的,可是11班的计算题得分率48.7%,有21名学生出现错误,因式分解题有18名学生有错误。解答题中的几何说理计算错误率更高。有些学生马虎成性,第一步能写对,但第二步还是出错。

    2. 学生不会灵活运用所学知识,不会举一反三。

    例如:在一道新定义运算题中,上学期就已经做过类似的题型,学生应该能做,这里仅多了整体思想和整式的运算,但有部分人是已经忘记方法,还有不少人对已讲过的整体思想和整式的运算不会推广应用。

    四、自我分析

    这次学生没有考出理想的成绩,和我有很大的关系。

    由于自己未能抓住主体,没能全面复习到位。两班复习要求提过后,对于具体操作未能抓细抓实,尤其是11班,复习内容来不及讲完,计算练习检查也不够及时,以致于成绩不理想。考前复习时,变式训练不够。考前只是一味的让学生多做试卷和练习,对于题目反映的思想和本质揭示的不够。

    近段时间对学生要求不够严格。本来两个班的孩子比较调皮,爱玩,这从平时的课间中就能清楚的看到。上课听讲不认真,不积极回答问题,作业完成的质量不高,而本人由于观察,管理不到位,以致于学生成绩不理想。

    针对这些问题,我都要采取相应的措施来弥补失误。以后我会认真准备每一节课,平时多和其他老师交流,积极吸取旁人的经验来为我的教学服务,并且严格要求学生,课上课下都要多关心学生,一切以教学为主,争取下次考试能拿到满意的成绩。

    初一数学期中总结与反思4

    通过这次期中考试,我发现我在数学上存在许多的不足之处,虽然我平时的成绩一直挺好。初中的老师就对我们教导:一份努力一分收获。可是,对于我来说,只想不劳而获,在上个月中我松懈了额许多。

    这次考试之前我就预料到了数学会考得不好,我也知道数学为什么会考得不好。其一:对基础知识掌握的不够透彻;其二:在数学这一学科上没有花时间;其三:初中的数学基础不够扎实,以上种种原因正是导致我数学考得不好的主要原因。

    考试之后,我感到非常的困惑。虽然我心中仍然坚定着自己的理想,但我不知道这会不会是空想。老师,我很想问你,你的最初梦想恐怕不是当老师吧?那你曾经迷茫过吗?其实经过高一这大半个学期,我没怎么努力,因为我看到许多努力的同学起早贪黑的反而没有那些不学无术的同学考得好,我怕我的努力没有成果,反而使自己质疑自己起来?

    有时候看到父母微弯的身板,我也想过要好好的读书,可是这个想法和现状起冲突,那么,我只有什么都不做。曾经,也有人问我喜欢什么,虽然那时候我还很小,但我记得当时我想都没想就回答了读书,上了高中后,许多陌生的面孔也熟悉了起来。正是熟悉的面孔反而带给了我陌生的感觉,我不知道前方的路怎么走……

    初一数学期中总结与反思5

    我校期中考试在全体老师的共同努力下,已经圆满地结束。各位教师也已经按照学校的要求对学科教学进行了分析和总结,找差距,找不足,以便在今后的教学中进行修正和改进。教师、学生和家长对期中考试也很看重。教师要了解自己的教学情况;学生想知道自己学得怎样,家长渴望了解孩子的在校学习状况。同时从教学管理角度看,通过考试可以了解半学期的教与学情况,对后半学期的教学有借鉴、参考、指导作用,所以学校对期中考试每个环节均作了认真组织和精心安排。现就期中考试的前后工作进行总结与反思:

    一、准备工作

    根据校办要求,考前一周,召开了全体教师会,要求思想上高度重视,工作中积极主动,主要做了如下工作:①强化学生书写训练,强调试卷的书写与条理占5 % ②强调激励评价机制,不但发学习成绩奖,还发学习进步奖。③各班级做好期中复习工作。④严肃考风考纪,严禁作弊。⑤营造考试氛围,精心安排考场。

    二、阅卷工作

    本次阅卷采用教师集中、流水作业的方式进行,由教导处,统一安排。上午考试,下午教师集体评卷。阅卷过程中,各位老师都能服从分配,毫无怨言,本着对学校负责,对学生负责的态度,认真出色地完成任务,大大提高了考试的可信度,实效性,保证了考试的公平、公正,真正达到了阶段性评价教学的目的。总得说来,阅卷质量较好,信度较高,统分、登分几乎无差错,圆满地完成了期中阅卷工作。

    四、考后工作

    考试结束后,我们主要做了如下工作:①学校及时计算出教师成绩,上发至教办邮箱,②教师写出了试卷分析.

    五、反思

    有许多教师、同学在期中考试后,往往只是关注于考试成绩而忽略了更为重要的考后反思工作,无论考试成绩优或劣,考试后都要认真地进行总结,因为只有这样,师生才能找到考好或是考得不好的原因。找到了问题的根结,在今后的教、学中就会更有利于自己发挥优点,改正缺点,从而在之后的考试中发挥出优异水平,所以说考后自我反省的意义一点都不亚于考试本身。

    期中考毕竟只是一次阶段性的诊断测试,不能将其结果“夸大化”和“绝对化”,家长和老师应该帮助学生剖析期中考试成败的原因。

    建议同学们,在期中考试后,向自己提出三个问题:①成绩跟以往相比是上升还是下滑?②如果上升,是因为考试题目适合你(有些同学遇到比较难的题目反而成绩会比较好,有些则反之),还是其他同学出现了失误,还是自己的真实水平的确上升了?③如果下滑,问题又出在哪里?

    针对这次的期中考试成绩以及近期的学习状态如此进行反思,同学们就能从整体上把握住此次期中考试成败的关键因素和自己所面临的处境,以及所要努力的方向了。

    初一期中数学重点必考题

    1.初一上册数学期中知识点总结归纳

    (一)正负数

    1.正数:大于0的数。

    2.负数:小于0的数。

    3.0即不是正数也不是负数。

    4.正数大于0,负数小于0,正数大于负数。

    (二)有理数

    1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

    2.整数:正整数、0、负整数,统称整数。

    3.分数:正分数、负分数。

    (三)数轴

    1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

    2.数轴的三要素:原点、正方向、单位长度。

    3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

    4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

    (四)有理数的加减法

    1.先定符号,再算绝对值。

    2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

    3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

    4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

    (五)有理数乘法(先定积的符号,再定积的大小)

    1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

    2.乘积是1的两个数互为倒数。

    3.乘法交换律:ab=ba

    4.乘法结合律:(ab)c=a(bc)

    5.乘法分配律:a(b+c)=ab+ac

    (六)有理数除法

    1.先将除法化成乘法,然后定符号,最后求结果。

    2.除以一个不等于0的数,等于乘这个数的倒数。

    3.两数相除,同号得正,异号得负,并把绝对值相除,0除以粗梁贺任何一个不等于0的数,都得0。

    2.初一上册数学期中知识点总结归纳

    一、答题原则

    大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时报告监考老师处理。

    答题时,一般遵循如下原则:

    1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。

    2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。渣册解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。

    3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分岩派的地方争取得分,但是要防止被难题耗时过多而影响总分。

    4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。

    5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。

    6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到“前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。

    二、审题要点

    审题包括浏览全卷和细读试题两个方面。

    一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。

    二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。

    1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。

    2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。

    3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。

    三、时间分配

    近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目

    中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。

    在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。

    在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。

    一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。

    四、大题和难题

    一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。

    五、各种题型的解答技巧

    1.选择题的答题技巧

    (2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。

    (3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。

    (4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。除须计算的题目外,一般不猜A。

    2.填空题答题技巧

    (1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

    (2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。

    3.解答题答题技巧

    (1)仔细审题。注意题目中的关键词,准确理解考题要求。

    (2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

    (3)给出结论。注意分类讨论的问题,最后要归纳结论。

    (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

    六、如何检查

    在考试中,主动安排时间检查答卷是保证考试成功的一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。

    检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。

    选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。

    对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。

    计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;若时间仓促,来不及验算的话,有一些简单的验证方法:一是查单位是否有误;二是看计算公式引用有无错误;三是看结果是否比较“像”,这里所说的“像”是依靠经验判断,如应用题的答案是否符合实际意义;数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,能用其他方法再试着去做

    七、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。

    同学们拿到草稿纸后,请先将它三折。然后按顺序使用。草稿纸上每道题之间留空,标清题号。字迹要做到能够准确辨认,切不可胡写乱画。这样做的好处是:

    1.草稿纸展现的是你的答题思路。草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。

    2.对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。第二次做时如果重头再思考非常浪费时间。利用草稿纸,可以迅速找到上次的思维断点。从而继续攻破。关键结论要特殊标记。

    3.检查过程中,草稿纸更是的帮手。如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。

    3.初一上册数学期中知识点总结归纳

    图形的初步认识

    一、立体图形与平面图形

    1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

    2、长方形、正方形、三角形、圆等都是平面图形。

    3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

    二、点和线

    1、经过两点有一条直线,并且只有一条直线。

    2、两点之间线段最短。

    3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

    4、把线段向一方无限延伸所形成的图形叫做射线。

    三、角

    1、角是由两条有公共端点的射线组成的图形。

    2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

    3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

    4、度、分、秒是常用的角的度量单位。

    把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

    四、角的比较

    从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

    五、余角和补角

    1、如果两个角的和等于90(直角),就说这两个角互为余角。

    2、如果两个角的和等于180(平角),就说这两个角互为补角。

    3、等角的补角相等。

    4、等角的余角相等。

    六、相交线

    1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

    2、注意:

    ⑴垂线是一条直线。

    ⑵具有垂直关系的两条直线所成的4个角都是90。

    ⑶垂直是相交的特殊情况。

    ⑷垂直的记法:a⊥b,AB⊥CD。

    3、画已知直线的垂线有无数条。

    4、过一点有且只有一条直线与已知直线垂直。

    5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

    6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

    7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

    两条直线相交有4对邻补角。

    8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

    七、平行线

    1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

    2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

    3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

    4、判定两条直线平行的方法:

    (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

    (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

    (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

    5、平行线的性质

    (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

    (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

    (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

    4.初一上册数学期中知识点总结归纳

    1.有理数:

    (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

    (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

    (3)自然数0和正整数;a>0a是正数;a<0a是负数;

    a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

    2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

    3.相反数:

    (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

    (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

    (3)相反数的和为0a+b=0a、b互为相反数.

    4.绝对值:

    (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

    (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

    (3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.

    5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

    6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

    5.初一上册数学期中知识点总结归纳

    1.代数式:用运算符号"+-×÷……"连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

    2.列代数式的几个注意事项:

    (1)数与字母相乘,或字母与字母相乘通常使用"·"乘,或省略不写;

    (2)数与数相乘,仍应使用"×"乘,不用"·"乘,也不能省略乘号;

    (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

    (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

    (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

    (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

    3.几个重要的代数式:(m、n表示整数)

    (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

    (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

    (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

    (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

    有理数负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

    初一期中数学试卷下册

    很多初一学生都在为期中考试忙着复习,下面我整理了一些初一数学易错知识点,供大家参考!

    初一数学易错知识点有哪些

    数与式

    1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

    2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

    3:平方根、算术平方根、立方根的区别。填空题必考。

    4:求分式值为零时学生易忽略分母不能为零。

    5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

    6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

    7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

    8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

    9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

    方程(组)与不等式(组)

    1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

    2:运用等式性质时,两边同除以一个数必须要注意不没衫能为O的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!

    3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

    4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

    5:关于一元一次不等式组有解无解的条件易忽视枯神腔相等的情况。

    6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

    7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

    8:利用函数图象求不等式的解集和方程的解。

    函数

    1:各个待定系数表示的的意义。

    2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

    3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

    4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

    5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

    6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

    7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

    8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

    三角形

    1:三角形的概念以及三角形的角平分线,中线,高线的特征与区瞎缓别。

    2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

    3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

    4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。

    5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。

    6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

    7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。(2012年25题考点)

    8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。

    9:中点,中线,中位线,一半定理的归纳以及各自的性质。

    10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)

    11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

    统计与概率

    1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。

    2:在从统计图获取信息时,一定要先判断统计图的准确性。不规则的统计图往往使人产生错觉,得到不准确的信息。

    3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。

    4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。

    5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。

    初一数学如何提高成绩

    初一学生学好数学,首先要转变学习方式,培养自己的数学学习能力,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习。

    在数学学习过程中,要养成良好的复习习惯。知识都有一个遗忘规律,新学知识过了一段时间,如果不去温习很容易遗忘,数学复习更需要及时复习、反思。如对所学习的知识、方法有没有彻底掌握;学了哪些数学思想方法,如何运用这些数学思想;经常复习巩固典型问题,不要同样问题一而再再而三的错

    建议初一学生准备一本数学“错题本”,把平时犯的“典型错误”记下来,想想错在哪里,为什么会错,怎么改正,这样错误题目、不会做的题目就会越来越少。

    数学学习讲究的是一个思维转变的过程,但任何思维训练并不能立竿见影,需要一个循序渐进的过程。我们要在熟练掌握基本知识概念上,通过运用这些知识,达到深化理解、培养思维的目的,避免以“练”代“复”的题海战术,学会举一反三、熟练应用,最终提高数学成绩。

    初一数学期中试卷免费及答案

    高效的学习,要学会给自己定定目标(大、小、长、短),这样学习会有一个方向;然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的攻克、落实。本篇文章是我为您整理的《初一数学上册期中知识点》,供大家借鉴。

    初一数学上册期中知识点

    1.有理数:

    (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

    (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

    2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

    3.相反数:

    (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

    (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

    4.绝对值:

    (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

    (2)绝对值可表示为:

    绝对值的问题经常分类讨论;

    (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

    5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

    初一数学上册期中知识点

    二元一次方程组

    1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

    2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

    3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

    4.二元一次方程组的解法:

    (1)代入消元法;(2)加减消元法;

    (3)注意:判断如何解简单是关键.

    ※5.一次方程组的应用:

    (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

    (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

    (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知梁孝野数的值,但总可以求出任何两个未知数的关系.

    一元一次不等式(组)

    1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

    2.不等式的基本性质:

    不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

    不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

    不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

    3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

    4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

    5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

    初一数学上册期中知识点

    整式的加减

    一、代数式

    1、用运算符号把数或表橡喊示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

    2、用数值代替代数慎拍式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

    二、整式

    1、单项式:

    (1)由数和字母的乘积组成的代数式叫做单项式。

    (2)单项式中的数字因数叫做这个单项式的系数。

    (3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

    2、多项式

    (1)几个单项式的和,叫做多项式。

    (2)每个单项式叫做多项式的项。

    (3)不含字母的项叫做常数项。

    3、升幂排列与降幂排列

    (1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

    (2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

    三、整式的加减

    1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

    去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

    2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

    合并同类项:

    (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

    (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

    (3)合并同类项步骤:

    a.准确的找出同类项。

    b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

    c.写出合并后的结果。

    (4)在掌握合并同类项时注意:

    a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

    b.不要漏掉不能合并的项。

    c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

    说明:合并同类项的关键是正确判断同类项。

    3、几个整式相加减的一般步骤:

    (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

    (2)按去括号法则去括号。

    (3)合并同类项。

    4、代数式求值的一般步骤:

    (1)代数式化简

    (2)代入计算

    (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

    图形的初步认识

    一、立体图形与平面图形

    1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

    2、长方形、正方形、三角形、圆等都是平面图形。

    3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

    二、点和线

    1、经过两点有一条直线,并且只有一条直线。

    2、两点之间线段最短。

    3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

    4、把线段向一方无限延伸所形成的图形叫做射线。

    三、角

    1、角是由两条有公共端点的射线组成的图形。

    2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

    3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

    4、度、分、秒是常用的角的度量单位。

    把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

    四、角的比较

    从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

    五、余角和补角

    1、如果两个角的和等于90(直角),就说这两个角互为余角。

    2、如果两个角的和等于180(平角),就说这两个角互为补角。

    3、等角的补角相等。

    4、等角的余角相等。

    六、相交线

    1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

    2、注意:

    ⑴垂线是一条直线。

    ⑵具有垂直关系的两条直线所成的4个角都是90。

    ⑶垂直是相交的特殊情况。

    ⑷垂直的记法:a⊥b,AB⊥CD。

    3、画已知直线的垂线有无数条。

    4、过一点有且只有一条直线与已知直线垂直。

    5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

    6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

    7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

    两条直线相交有4对邻补角。

    8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

    七、平行线

    1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

    2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

    3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

    4、判定两条直线平行的方法:

    (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

    (2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

    (3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

    5、平行线的性质

    (1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

    (2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

    (3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

    初一数学上册期中知识点相关文章:

    ★初一数学上册知识点归纳

    ★初一数学上册知识点复习梳理归纳

    ★初一数学上册知识点汇总归纳

    ★初一数学上册知识点

    ★初一数学上册知识点总结

    ★初一数学上册重点知识整理

    ★初一数学上册知识点梳理归纳

    ★初一数学上册知识点大全

    ★初一上册数学知识点归纳整理

    ★初一数学上册知识点全

    初一下册期中数学

    数学是研究现实世界的空间形式和数量关系的科学。数学学习方法指导是教育者通过一定的教育途径对学习者进行学习方法的传授、诱导、诊治,使学习者掌握科学的学习方法并灵活运用于学习之中,逐步形成较强的自学能力的方法,实践证明忽视了“学”,“教”就失去了针对性。“授之于鱼,不如授之以渔”,只有重视对学生的学法指导,不断激发学习动机和兴趣才能全面提高学生的素质,为学生的可持续发展提供有力的支持。数学学习方法指导是一个由非智力因素、学习方法、学习习惯、学习能力多元组成的统一整体,经过一个学期的艰苦学习,如何在期末对所学知识进行梳理、复习,考出理想的数学成绩,这是大家关心的问题。

    首先列举一下在数学学习中经常出现穗腊激的几个问题:

    1、对知识点的理解停留在一知半解的层次上;

    2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;

    3、解题时,小错误太多,始终不能完整的解决问题;

    4、解题效率低,在规定的时间内不能完成一定量猜袜的题目,不适应考试节奏;

    5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;

    如何解决呢?

    一、平时就注意指导学生学会复习巩固,提高对知识迁移的能力 1、

    学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后

    再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。特别是低年级局正学生做到这点很困难。指导时应教会学生(1)如何将文字语言转化为符号语言;

    (2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。

    2、细心地发掘概念和公式,很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

    3、总结相似的类型题目,这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。“总结归纳”是将题目越

    做越少的最好办法。

    4、收集自己的典型错误和不会的题目

    同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

    5、就不懂的问题,积极提问、讨论

    发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。

    讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。“勤学”是基础,“好问”是关键。

    6、注重实战(考试)经验的培养

    自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

    二、复习时让学生明确期末复习的作用

    1、使知识化、条理化、形成知识网。

    2、对所学的知识点查漏补缺,克服不足,避免错点。

    3、复习以掌握各种概念、性质、方法以及他们之间的联系

    4、通过典型题的训练,提高自己驾驭数学的知识,解决实际问题的能力。

    三、整体建构,把握重点

    在进行复习时,学生容易依赖老师,习惯教师带着复习总结。要培养学生学会自己总结的方法。在具体指导时可给出复习总结的方法和途径。首先看书、看笔记、看习题,通过看,回忆、熟悉所学内容,整体建构整本书以及每个单元相关的知识点,标出重点、难点,列出各知识点之间的关系,画出知识树或知识梳理框架图。在先前经验的基础上主动建构,把先前学到的知识重组、转换、变式、联系。

    任何一次大型的数学考试,不仅要注意知识点的覆盖率,更注重对重点知识进行重点考察。例如,七年级数学中的平行线的性质和判定、三角形的三边、三角的关系,外角和内角的关系,二元一次方程组的解法及应用,一元一次不等式(组)的解法及应用,还有平方

    根、立方根;八年级数学中的分式的意义、运算,分式方程,反比例函数的图像、性质及实际应用,勾股定理及逆定理的应用,平行四边形、特殊的平行四边形、梯形的应用,数据的波动等都属于必考的范畴,因此,同学们要熟练掌握这部分内容。有目的、有重点、有选择地解一些各种档次、类型的习题,题目一定要精。通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法,从而提高学生对知识迁移的能力。

    四、夯实基础,扫清盲点

    在复习的过程中,同学们不仅要对重点知识进行重点复习,对那些不常用的非重点知识,也要给予足够的重视。以七年级数学为例,像平移、镶嵌、实数的分类等边缘知识点很容易被一些同学忽视。复习时,首先要弄清这些知识点。例如:平移是把一个图形整体沿某一方向移动一定的距离。其次要弄懂典型例题。再如,多边形镶嵌的条件是(1)拼接在同一个点的各个角的和恰好等于3600。(2)相邻的多边形有公共边。

    例题:①用形状和大小完全相同的一些三角形(或四边形)能否覆盖平面?(结论是能)。②用正三角形、正四边形、正五边形、正六边形中的一种或两种可以进行平面镶嵌的是(正三角形、正四边形、正六边形)。

    五、注重技巧,突破难点

    大型的数学考试,试题不仅要面向全体学生,又要有利于提高考试的区分度,因此,难题是必不可少的。所谓的难题,即可以是读起来不易理解的文字应用题,也可以是综合性很强的几何、代数综合题。要想突破难关,平时就要对教材上的难点注意理解透彻。 例题:把一些书分给一些学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。这些书有多少本?学生有多少人?

    解:设学生有x人

    则: 3x+8-5(x-1)≥0

    3x+8-5(x-1)<3

    本题中“那么最后一人就分不到3本”容易误解为分到一本或两本,在这里提请同学们注意这其中也包括没分到的情况。复习时,对教材中诸如此类的问题一定要加以重视。

    突破难题的最重要一点是加强分析(审题)和理解(已知量和未知量的关系)能力的培养。

    知识归根结底是学生学会的,不是老师教会的,老师教给学生的知识是有限的,让学生掌握正确的学习数学的方法,树立起自信心,必胜心,养成良好的学习习惯,形成良好的思维品质,学生会积极主动的参与到学习中去,并且善于发现问题,善于与他人合作交流、共同探讨。相信他们在期末数学的考试中会取得优异的成绩。

    猜你喜欢