当前位置: 首页 > 我要自学 > 小学 > 五年级

五年级上册数学奥数题,5~6年级的奥数题计算

  • 五年级
  • 2024-08-29

五年级上册数学奥数题?10、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?【篇二】小学五年级数学奥数题 1、甲、乙、丙三人在A、那么,五年级上册数学奥数题?一起来了解一下吧。

五年级奥数题

、百度知道

五年级奥数数学题

20道简单的五年级奥数题及答案

查看全部10个回答写回答有奖励

20道简单的五年级奥数题及答案

急急急!!!

我来答有奖励

138******49

聊聊关注成为第3位粉丝

1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?

【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.

方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.

有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.

2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?

【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.

如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.

也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.

那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.

3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?

【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.

因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.

又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.

在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.

那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.

所以甲班的平均分比乙班的平均分高96-84=12分.

方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.

所以甲班的平均分比乙班的平均分高12×(8-7)=12分.

4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?

【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;

如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.

现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.

设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.

即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.

即甲、乙两家各交电费2元7角6分,1元8角.

5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?

【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.

又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.

同时已知m与n都是10的倍数,于是有

, 解得 , 另外四组因为解得m、n不是10的倍数.

经检验只有 满足.

所以,一小参加春游430人,二小参加春游570人.

6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?

【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.

顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;

逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.

休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.

第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.

3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.

第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.

于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.

所以,他最多能划离码头1.7千米.

7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?

48×[40×4÷(48-40)]=960(台)

8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?

【分析与解】12000×24÷(24-4)-12000=2400(本)

9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?

【分析与解】甲厂存砖:87500-25000=62500(块)

乙厂存砖:(87500+4500)-(25000-3000)=70000(块)

∴ 乙厂存砖多,多 70000-62500=7500(块)

10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?

【分析与解】(45-24)×2=42(千克)

11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?

【分析与解】这是一个相向而行相遇求路程的问题。

五年级上册冀教数学奥数题

1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?

解:AB距离=(4.5×5)/(5/11)=49.5千米

2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?

解:客车和货车的速度之比为5:4

那么相遇时的路程比=5:4

相遇时货车行全程的4/9

此时货车行了全程的1/4

距离相遇点还有4/9-1/4=7/36

那么全程=28/(7/36)=144千米

3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

解:甲乙速度比=8:6=4:3

相遇时乙行了全程的3/7

那么4小时就是行全程的4/7

所以乙行一周用的时间=4/(4/7)=7小时

4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?

解:甲走完1/4后余下1-1/4=3/4

那么余下的5/6是3/4×5/6=5/8

此时甲一共走了1/4+5/8=7/8

那么甲乙的路程比=7/8:7/10=5:4

所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5

那么AB距离=640/(1-1/5)=800米

5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

每天5道应用题五上

1,因为3个数的和是偶数,所以其中一个是2,要使他们的积最大,另外两个数的差应尽量最小

所以这3个数是2,397,401,所以他们的乘积为:318394。

2,设全组的平均分为x,那么总分为9x,男生的平均分为(9x-91*4)/5,由题意有:

(9x-91*4)/5=x+3,所以x=94.75分

3,2-1=1,13-1=12,12是分子,分母是12*2=24,24-13=11。

4,因为增加1年,张大爷增加1岁,大刚,中刚和小刚共增加了3岁,所以每增加一年他们的岁数差就会减少2岁,(70-15-20-5)/2=15, 15年后,大刚、中刚、小刚的年龄之和与张大爷的年龄相同

5,因为王丽-150,李芸-350,则后来王丽比李芸多350-150=200元。200是李芸

小学五年级奥数题100道

1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?

分析:此题不需求面积的.只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积.

1米20厘米=120厘米

120÷30=4 90÷30=3

4×3=12(块)

答:最多可以剪12块.

2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形.这个圆柱的表面积和体积是多少?

分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长.

圆柱的表面积:

(3.14×1×2)×(3.14×1×2)+3.14×1×1×2

=6.28×6.28+6.28

=6.28×7.28

=45.7184(平方分米)

圆柱的体积:

3.14×1×1×(3.14×1×2)

=3.14×6.28

=19.7192(平方分米)

答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米.

3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站.已知火车平均每小时行98千米.甲乙两站间的铁路长多少千米?

分析:这题的解题关键是要知道火车行驶的时间.

24-8+9=25(小时)[或者:12-8+12+9=25(小时)]

98×25=(100-2)×25

=2500-50

=2450(千米)

答:甲乙两站间的铁路长2450千米.

4.一个圆和一个扇形的半径相等.已知圆的面积是30平方厘米,扇形的圆心角是72度.求扇形的面积.

分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系.这个倍数就是它们圆心角之间的倍数关系.

72÷360=1/5,30×1/5=6(平方厘米)

答:扇形的面积是6平方厘米.

第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积.

分析:此题与上题的思路一样.

3.14×3×3×20%=5.652(平方厘米)

答:这个扇形的面积是5.652平方厘米.

5.学校把植树任务按5:3分给六年级和五年级.六年级实际栽了108棵,超过原分配任务的20%.原计划五年级栽树多少棵?

分析:六年级原计划栽树的棵数是解题的关键.

1、六年级原计划栽树多少棵?

108÷(1+20%)=108×5/6=90(棵)

2、原计划五年级栽树多少棵?

90÷5×3=54(棵)

综合算式:

108÷(1+20%)÷5×3

=90÷5×3

=54(棵)

答:原计划五年级栽树54棵.

6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5.两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?

分析:求两队的工效是解题的关键.

1、两队的工效和是多少?

2/3÷6=1/9

2、乙队的工效是多少?

1/9×[5÷(3+5)]

=1/9×5/8

=5/72

3、还要几天才能修完?

(1-2/3)÷5/72

=1/3×72/5

=24/5(天)

答:还要24/5天才能修完.

7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量.照这样计算,这个水泥厂今年将比去年增产百分之几?

解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量.

232400÷5×(12-5)

=46480×7

=325360(吨)

325360÷232400=1、4=140%

解法二:把232400吨看作单位“1”,

1、今年平均每月生产量是去年的几分之几?

1÷5=1/5

2、今年比去年增产几分之几?

1/5×(12-5)=7/5

3、今年比去年增产百分之几?

7/5=1.4=140%

综合算式:1÷5×(12-5)=1.4=140%

答:这个厂今年比去年增产140%.

8.幼儿园买进大小两种毛巾各40条,共用258.8元.大毛巾的单价比小毛巾单价的2倍多0.11元.这两种毛巾单价各是多少元?

设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元.

[x+(2x+0.11)]×40=258.8

3x=6.47-0.11

x=6.36÷3

x=2.12

2x+0.11=2.12×2+0.11

=4.35

答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元.

9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块.在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)

分析:房间的面积是一定的,每块砖的面积和块数成反比例.

设需要x块.

0.15×0.15x =6×4.8

x =6×4.8÷0.15÷0.15

x =1280

答:需要1280块.

设需要y块.

0.2×0.2y=4.8×3.6

y=4.8×3.6÷0.2÷0.2

y=432

答:需要432块.

10.一艘轮船所带的柴油最多可以用6小时.驶出时顺风,每小时行驶30千米.驶回时逆风,每小时行驶的路程是顺风时的4/5.这艘轮船最多驶出多远应往回驶?

分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例.

设这艘轮船逆风行驶了x小时.

30×4/5x=30×(6-x)

4/5x=6-x

9/5x=6

x=10/3

30×4/5×10/3=80(千米)

答:这艘轮船最多驶出80千米就应往回驶.

11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲乙两地的公路长多少千米?

分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米.第一小时和第二小时共行全程的(1/7+1/7)和16千米.由此可知(96+16)占全程的(1-1/7-1/7).

根据上面的分析得:

(96+16)÷(1-1/7-1/7)

=112÷5/7

=112×7/5

=156、8(千米)

答:甲乙两地的公路长156、8千米.

或者用方程

设甲乙两地的公路长x千米.

(1-1/7-1/7)x=96+16

5/7x=112

x=156、8

答:甲乙两地的公路长156、8千米.

题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变.如何解答?

12.一个编织组,原来30人10天生产1500只花篮.现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)

分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的.工作效率一定,工作总量和工作时间成正比例.

设需要x天.

1500:(30×50)=6000:(80×x)

1500×(80×x)=6000×(30×50)

x=6000×30×50÷80÷1500

x=6000÷80

x=75

答:需要75天.

13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?

14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.

15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?

16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?

17. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?

18.超市开展矿泉水“买5送1”的活动.一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?

(买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶.)

19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?

(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04

20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?

《 40÷4=10 10×10×40÷1000=4》

回答者: cyg2436 - 高级经理 七级 1-12 15:16

小学5年级奥数题选

填空题

1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________.

2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________.

3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个.

4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数.

5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______.

6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小

8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸.其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份.那么,订《扬子晚报》和《报刊文摘》的共有_______家.

9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米.如果两人同时从两端点出发,那么15分钟内他们共相遇_______次.

10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务.这批零件共有_______个.

(小数报427期改编)

11.李、孙、王三人今年年龄之和为113岁,王38岁时,孙的年龄是李的2倍,李17岁时,王的年龄是孙的2倍,孙今年_______岁.

(小数报492期,98—9—18)

(小数报475期)

13.有16把锁和20把钥匙,其中20把钥题中的16把是和16把锁一一配对的,但现在锁和钥匙弄乱了.那么,至少需要试_______次才能确保锁和钥匙都配对起来.

(小数报457期,改编)

(小数报475期98—4—10改编)

15.甲、乙、丙、丁四名学生参加南通市小学生数学竞赛.赛前,三位老师进行预测:

一位老师说:丙第一名,甲第二名;

另一位老师说:乙第一名,丁第四名;

还有一位老师:丁第二名,丙第三名.

五年级奥数题两道

有奖励

20道简单的五年级奥数题及答案

急急急!!!

我来答有奖励

138******49

LV.1

聊聊关注成为第1位粉丝

1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?

【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.

方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.

有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.

2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?

【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.

如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.

也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.

那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.

3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?

【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.

因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.

又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.

在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.

那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.

所以甲班的平均分比乙班的平均分高96-84=12分.

方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.

所以甲班的平均分比乙班的平均分高12×(8-7)=12分.

4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?

【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;

如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.

现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.

设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.

即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.

即甲、乙两家各交电费2元7角6分,1元8角.

5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?

【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.

又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.

同时已知m与n都是10的倍数,于是有

, 解得 , 另外四组因为解得m、n不是10的倍数.

经检验只有 满足.

所以,一小参加春游430人,二小参加春游570人.

6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?

【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.

顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;

逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.

休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.

第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.

3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.

第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.

于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.

所以,他最多能划离码头1.7千米.

7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?

48×[40×4÷(48-40)]=960(台)

8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?

【分析与解】12000×24÷(24-4)-12000=2400(本)

9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?

【分析与解】甲厂存砖:87500-25000=62500(块)

乙厂存砖:(87500+4500)-(25000-3000)=70000(块)

∴ 乙厂存砖多,多 70000-62500=7500(块)

10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?

【分析与解】(45-24)×2=42(千克)

11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?

【分析与解】这是一个相向而行相遇求路程的问题。

以上就是五年级上册数学奥数题的全部内容,分析:此题与上题的思路一样. 3.14×3×3×20%=5.652(平方厘米) 答:这个扇形的面积是5.652平方厘米. 5.学校把植树任务按5:3分给六年级和五年级.六年级实际栽了108棵,超过原分配任务的20%.原计划五年级栽树多少棵? 分析:六年级原计划栽树的棵数是解题的关键. 1、。

猜你喜欢