高一数学基础知识?3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、那么,高一数学基础知识?一起来了解一下吧。
一集合与简易逻辑
集合具有四个性质 广泛性 集合的元素什么都可以
确定性集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的
互异性集合中的元素必须是互不相等的,一个元素不能重复出现
无序性集合中的元素与顺序无关
二 函数
这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如构造函数 函数与方程结合 对称思想,换元等等
三数列
这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等
四 三角函数
三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行
五平面向量
这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率
高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130
一.集合的概念
1.集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
二.函数的概念
1.设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
2.证明函数的奇偶性和单调区间
3.对数,函数,指数函数以及复合函数。(切记:在解决有关函数的任何问题时,一定要数形结合)
4.函数的零点,即函数值等于0时X的值.
5.利用二分法求方程的近似解.
6.函数的应用,也就是利用函数解应用题.
我没有细说,都是大概。想来楼主关于书上的基础都能在笔记或书上找到,不明白的在问我我在细说!呵呵!
1、集合与函数(集合的概念、集合元素的三个特征、集合的分类、子集的概念、子集的性质、有限集合的子集个数、关于集合的运算:注意交集或并集中“或”“且”的意思,“或”两者皆可的意思“且”是两者都有的意思、交集与并集的有关性质、全集与补集的性质、函数的定义、三要素、函数的定义域、函数的值域、函数的单调性、单调区间、奇偶性以及奇偶性的特点)
2、3章说名称你也不能太明白,知识点太零碎了,我想想怎么弄 在跟你说!呵呵!
高一数学必修1第一章知识点总结
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集N*或 N+ 整数集Z有理数集Q实数集R
高一阶段是数学打好基础的关键时期,也是通过努力能够取得成绩,建立数学学习信心的最佳时机。下面是我根据《一线调研高中同步讲练测》辅导书整理的一些知识点,大家可以进行学习
以上就是高一数学基础知识的全部内容,高一数学必修一知识点梳理1 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent)。