当前位置: 首页 > 如何自学 > 初中 > 八年级

函数八年级上册,函数的应用八上概念

  • 八年级
  • 2024-01-09

函数八年级上册?八年级上册数学一次函数知识1 知识点1 一次函数和正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,那么,函数八年级上册?一起来了解一下吧。

人教版八年级上册数学课后题答案

初二上学期学一次函数和正比例函数,初二下学期学反比例函数,初三上学期学二次函数。

函数的概念是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。

注意

1、自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

2、因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

3、函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

函数八年级上册苏科版

一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0) (k为任意不为零的实数 b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)

一次函数的图像及性质

1.作法与图形:通过如下3个步骤

(1)列表[一般取两个点,根据两点确定一条直线];

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

y=kx时

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线必通过原点,经过一、三象限

当b<0时,直线必通过三、四象限。

函数八年级上册知识点

函数函数,我们并不熟悉,八年级的函数还不算难,认真学习还是可以很好掌握的,这就需要老师提供一份完善的教案了。下面是由我整理的八年级上册数学函数教案,希望对您有用。

八年级上册数学函数教案第一部分

教学目标

1.认识变量、常量. 2.学会用含一个变量的代数式表示另一个变量.

教学重点

1.认识变量、常量. 2.用式子表示变量间关系.

教学难点:用含有一个变量的式子表示另一个变量.

教学过程

Ⅰ.提出问题,创设情境

情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.

1.请同学们根据题意填写下表:

2.在以上这个过程中,变化的量是

________.不变化的量是__________.

3.试用含t的式子表示s.

Ⅱ.导入新课

首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.

从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米„„因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60•千米/小时是不变的量.

这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.

[活动]

1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y?

2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?

引导学生通过合理、正确的思维方法探索出变化规律.

结论:

1.早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元) 晚场电影票房收入:310×10=3100(元); 关系式:y=10x

2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)

挂2kg重物时弹簧长度:2×0.5+10=11(cm);挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)

关系式:L=0.5m+10

通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,•弹簧长度L都是变量.而票价10元,弹簧原长10cm„„都是常量.

八年级上册数学函数教案第二部分

Ⅲ.随堂练习

1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.

2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h•变化关系式,并指出其中常量与变量.

解:1.买1支铅笔价值 1×0.2=0.2(元)

买2支铅笔价值 2×0.2=0.4(元)

买x支铅笔价值 x×0.2=0.2x(元)

所以 y=0.2x

其中单价0.2元/支是常量,总价y元与支数x是变量.

2.根据三角形面积公式可知:

当高h为1cm时,面积S=

当高h为2cm时,面积S=

当高为hcm,面积S=1

21212222×5×1=2.5cm×5×2=5cm2 2 ×5×h=2.5hcm2

其中底边长为5cm是常量,面积S与高h是变量.

Ⅳ.课时小结

本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.

1.确定事物变化中的变量与常量.

第 3 页 共 46 页

2.尝试运算寻求变量间存在的规律.

3.利用学过的有关知识公式确定关系区.

八年级上册数学函数教案第三部分

Ⅴ.课后作业

1、 课后相关习题

2、 思考:瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y与层数x之间的关系式.

过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的

办法.

结论:从题意可知:

堆放1层,总数y=1

堆放2层,总数y=1+2

堆放3层,总数y=1+2+3

„ „

堆放x层,总数y=1+2+3+„x 即y=

备课资料

1.若球体体积为V,半径为R,则V=R3.其中变量是_______、•_______,常3412x(x+1)

量是________.

2.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下温度是23℃,则温度y与上升高度x之间关系式为__________.

3.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,•则油箱内余油量Q升与行驶时间t小时的关系是_________.

答案: 1.V R ;2.y=23°-340.7x100;3.Q=40-5t.

八年级上册数学函数笔记

y=kx+b k=1,b=1

即y=x+1 直线斜率k=1(倾斜角=45º),y轴上截距=1 (直线通过(0,1))

初二数学一次函数知识点总结

一、先明确一次函数的表达式:

y=x+1(因为k=1,b=1)

二、画平面直角坐标系:

坐标原点、单位长度、标明x轴与y轴

三、明确一次函数的图像是一条直线

四、两点确定一条直线,列表、描点只需要两个点

五、列表

当x=0时,y=1即(0,1)

当y=0时,x=-1即(-1,0)

六、描点,作图

过程就是如此,试着按步骤做一做。

以上就是函数八年级上册的全部内容,人教版八年级上册数学函数的概念教案 教材分析: 函数作为初等数学的核心内容,贯穿于整个初等数学体系之中.函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。

猜你喜欢