当前位置: 首页 > 如何自学 > 高中 > 高一

高一数学必修四,人教版高中教材必修四

  • 高一
  • 2023-07-20

高一数学必修四?⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,那么,高一数学必修四?一起来了解一下吧。

高一学必修一和必修几

要尽快适应高中学习,同学们必须在了解高中学习特点的基础上,掌握科学的学习 方法 。掌握科学的学习方法,应做到主动预习、正确听课、有效复习。以下是我给大家整理的高一数学必修四知识点梳理,希望能帮助到你!

高一数学必修四知识点梳理1

【公式一】

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二】

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三】

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四】

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五】

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六】

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高一数学必修四知识点梳理2

问题提出

1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.

2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?

3.我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.

知识探究(一):变量之间的相关关系

思考1:考察下列问题中两个变量之间的关系:

(1)商品销售收入与广告支出经费;

(2)粮食产量与施肥量;

(3)人体内的脂肪含量与年龄.

这些问题中两个变量之间的关系是函数关系吗?

思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越亏早高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描弯信述生活中两个变量之间的这种关系的成语吗?

思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如销闹雀何?

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.

1、球的体积和球的半径具有()

A函数关系B相关关系

C不确定关系D无任何关系

2、下列两个变量之间的关系不是

函数关系的是()

A角的度数和正弦值

B速度一定时,距离和时间的关系

C正方体的棱长和体积

D日照时间和水稻的亩产量AD练:知识探究(二):散点图

【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.

思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?

思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?

思考3:上图叫做散点图,你能描述一下散点图的含义吗?

在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.

思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?

思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?

思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?

一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.

一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.

知识探究(一):回归直线

思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?

思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?

这些点大致分布在一条直线附近.

思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?

思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?

思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?

知识探究(二):回归方程

在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.

思考1:回归直线与散点图中各点的位置应具有怎样的关系?

整体上最接近

思考2:对于求回归直线方程,你有哪些想法?

思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?20.9%某小卖部为了了解热茶销售量与气温

之间的关系,随机统计并制作了某6天

卖出热茶的杯数与当天气温的对照表:

如果某天的气温是-50C,你能根据这些

数据预测这天小卖部卖出热茶的杯数吗?

实例探究

为了了解热茶销量与

气温的大致关系,我们

以横坐标x表示气温,

纵坐标y表示热茶销量,

建立直角坐标系.将表

中数据构成的6个数对

表示的点在坐标系内

标出,得到下图。

高中数学必修四人教b版

最低0.27元/天开通百度文库会员,可在文库查看完整内容>

原发布者:帅哥哥888号

《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿轴正向的射线,围绕原点旋转所形成的图形称作角.逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为轴上角贺销:轴上角:3、第一象限角:第二象限角:第三象限角:第四象限角:4、区分第一象限角、锐角以及小于的角第一象限角:锐角:小于的角:5、若为第二象限角,那么为禅氏游第几象限角?所以在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为弧度的圆心角,记作.7、角度与弧度的转化:8、角度与弧度对应表:9、弧长与面积计算公式弧长:;面积:,注意:这里的均为弧度制.二、任意角的三角函数1、正弦:;余弦;正切其中为角终边上任意点坐标,.2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“核亏全stc”)第一象限:sin0,cos0,tan0,第二象限:sin0,cos0,tan0,第三象限:sin0,cos0,tan0,第四象限:sin0,cos0,tan0,4、三角函数线设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交于点T.由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有,,.我们就分

高一数学必修三

高一数学必修4知识点总结 1

第一章 三角函数

正角:按逆时针方向旋转形成的角

1、任意角负角:按顺时针方向旋转形成的角

零角:不作任何旋转形成的角

2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.

第二象限角的集合为k36090k360180,k

第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k

终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k

第一象限角的集合为k360k36090,k

3、与角终边相同的角的集合为k360,k

4、长度等于半径长的弧所对的圆心角叫做1弧度.

5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是

l. r

180

6、弧度制与角度制的换算公式:2360,1,157.3. 180

7、若扇形的圆心角为

为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,

1

11

Slrr2.

22

8

、设是一个任意大汪悉衡小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin

0,

yxy

,cos,tanx0. rrx

9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,

第三象限正切为正,第四象限余弦为正.

10、三角函数线:sin,cos,tan.

2222

11、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin

2

sin

tancos

sin

sintancos,cos.

tan

12、函数的诱导公式:

1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.

口诀:函陆尘数名称不变,符号看象限.

5sin

cos,cossin.6sincos,cossin. 2222

口诀:正弦与余弦互换,符号看象限.

13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变),得到函数ysinx的图象;再将

函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数

ysinx的图象.

②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的

1

倍(纵坐标不变困做),得到函数

ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移

个单位长度,得到函数

ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横

2

坐标不变),得到函数ysinx的图象. 14、函数ysinx0,0的性质: ①振幅:;②周期:

2

;③频率:f

1

;④相位:x;⑤初相:. 2

函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则

11

x2x1x1x2ymaxyminymaxymin

22,,2.

yASinx , A0 , 0 , T

2

15 周期问题

2

yACosx , A0 , 0 , T

yASinx, A0 , 0 , T

yACosx, A0 , 0 , T

yASinxb , A0 , 0 , b 0, T

2

2

yACosxb , A0 , 0 , b0 ,T

TyAcotx , A0 , 0 ,

yAtanx , A0 , 0 , T

yAcotx, A0 , 0 , T

yAtanx , A0 , 0 , T

3

第二章 平面向量

16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

相等向量:长度相等且方向相同的向量.

17、向量加法运算:

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

C

⑶三角形不等式:ababab.

⑷运算性质:①交换律:abba;

abcabc②结合律:;③a00aa.

a

b

abCC

4

⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

18、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量.

⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.

设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.

19、向量数乘运算:

⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a. ①

aa;

②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.

⑵运算律:①aa;②aaa;③abab.

⑶坐标运算:设ax,y,则ax,yx,y.

20、向量共线定理:向量aa0与b共线,当且仅当有唯一一个实数,使ba.

设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线.

21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有

且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,

点的坐标是

x1x2y1y2

时,就为中点公式。

高中数学人教必修四

高中阶段学科知识交叉多、综合性强悔谈,以理解和应用为主,要求学生要有更强的分析、概括、综合、实践的能力。在高中阶段,不能纯仔只局限于知识的学习,而要重视观察、思维、分析、阅读、动手等能力的培养。下面是我给大家带来的高一数学知识点,希望大家能够喜欢!

高一数学知识点汇总

空间几何体表面积体积公式:

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,S=6a2,V=a3

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

练习题:

1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()

(A)五面体

(B)七面体

(C)九面体

(D)十一面体

2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,做前汪则球的表面积为()

(A)9

(B)18

(C)36

(D)64

3.下列说法正确的是()

A.棱柱的侧面可以是三角形

B.正方体和长方体都是特殊的四棱柱

C.所有的几何体的表面都能展成平面图形

D.棱柱的各条棱都相等

高一数学知识点总结

一)两角和差公式 (写的都要记)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA ?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

(上面这个余弦的很重要)

sin2A=2sinA_cosA

三)半角的只需记住这个:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的余弦可推出降幂公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降幂公式可推出以下常用的化简公式

1-cosA=sin^(A/2)_2

1-sinA=cos^(A/2)_2

高一数学知识点梳理

重点难点讲解:

1.回归分析:

就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。

高一数学必修四目录

1.高一数学必修四知识点归纳

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

2.高一数学必修四知识点归纳

【公式一】

设α为任意角散键,终边相同的角的同冲轿巧一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

【公式二】

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

【公式三】

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

【公式四】

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

【公式五】

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

【公式六】

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

3.高一数学必帆配修四知识点归纳

直角三角形的面积求法

直角三角形面积常用公式S=1/2ab(公式中a,b分别为直角三角形的两直角边长)。

以上就是高一数学必修四的全部内容,⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题 2.高一下册数学必修四知识点总结 一、。

猜你喜欢