当前位置: 首页 > 北京自学网 > 初中 > 八年级 > 初二

初二因式分解,初二因式分解10个典型题

  • 初二
  • 2023-04-25
目录
  • 初二因式分解10个典型题
  • 初二数学因式分解50题带答案
  • 初二数学因式分解技巧
  • 初二因式分解公式大全
  • 初一因式分解

  • 初二因式分解10个典型题

    因式分解用待定系数法不就好了吗,十字相乘和双十字相乘的方法不推荐。 哎。待定系数法不只适用于函数,还可以用在很多方面的。腊燃

    在因式分轮渣虚解中,待定系数法是通用的。

    还是把公式说一说: 完全平方公式:a^2+b^2+2ab=(a+b)^2

    a^2+b^2-2ab=(a-b)^2

    平方差公式:a^2-b^2=(a+b)*(a-b)

    一般考试只会考这三个公式梁毁,但强烈要求掌握待定系数法!

    初二数学因式分解50题带答案

    101²+202×99+99²

    =(101+99)^2

    =200^2

    =40000

    88²+24×88+12²

    =(88+12)^2

    =100^2

    =10000

    39.8²-2×39.8×49.8+49.8²

    =(39.8-49.8)^2

    =(-10)^2

    =100

    x²+36x+224

    =(x+28)(x+8)

    =(22+28)(22+8)

    =1500

    4a²-4ab+b²

    =(2a-b)^2

    =(2*1/2-(-1又1/4))^2

    =81/16

    初二数学因式分解技巧

    平方差公辩迅式:a平方-b平方=(a+b)(a-b)

    完全平方和公式:(a+b)平方=a平方+2ab+b平方

    完全平方差公式:(a-b)平大灶山方=a平方滚中-2ab+b平方

    初二因式分解公式大全

    下面是我为你整理的初二数学因式分解教案,一起来看看吧。

    初二数学因式分解教案

    教学目标:

    1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.

    2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤搜罩,得出因式分解的方法.

    3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.

    教学重、难点:用提公因式法和公式法分解因式.

    教具准备:多媒体课件(小黑板)

    教学蚂告方法:活动探究法

    教学过程:

    引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?

    知识详解

    知识点1 因式分解的定义

    把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

    【说明】 (1)因式分解与整式乘法是相反方向的变形.

    例如:

    (2)因式分解是恒等变形,因此可以用整式乘法来检验.

    怎样把一个多项式分解因式?

    知识点2 提公因式法

    多项式ma+mb+mc中的各项都闷漏明有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

    探究交流

    下列变形是否是因式分解?为什么?

    (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

    (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

    典例剖析 师生互动

    例1 用提公因式法将下列各式因式分解.

    (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

    分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.

    小结 运用提公因式法分解因式时,要注意下列问题:

    (1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.

    (2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).

    (3)因式分解最后如果有同底数幂,要写成幂的形式.

    学生做一做 把下列各式分解因式.

    (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

    知识点3 公式法

    (1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

    (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

    探究交流

    下列变形是否正确?为什么?

    (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

    例2 把下列各式分解因式.

    (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

    分析:本题旨在考查用完全平方公式分解因式.

    学生做一做 把下列各式分解因式.

    (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

    综合运用

    例3 分解因式.

    (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

    分析:本题旨在考查综合运用提公因式法和公式法分解因式.

    小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.

    探索与创新题

    例4 若9x2+kxy+36y2是完全平方式,则k= .

    分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).

    学生做一做 若x2+(k+3)x+9是完全平方式,则k= .

    课堂小结

    用提公因式法和公式法分解因式,会运用因式分解解决计算问题.

    各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。

    自我评价 知识巩固

    1.若x2+2(m-3)x+16是完全平方式,则m的值等于( )

    A.3 B.-5 C.7. D.7或-1

    2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )

    A.2 B.4 C.6 D.8

    3.分解因式:4x2-9y2= .

    4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

    5.把多项式1-x2+2xy-y2分解因式

    思考题 分解因式(x4+x2-4)(x4+x2+3)+10.

    附:板书设计

    因式分解

    因式分解的定义 探究交流 探索创新

    提公因式法 典例剖析 课堂小结

    公式法 综合运用 自我评价

    初二数学因式分解教学反思

    因式分解是第九章的难点。学生初学因式分解时往往要与乘法运算混淆。原因主要是概念不清。

    在教学时,因式分解与乘法的区别是通过把等号两边的式子互相转换位置而直观得出。对于因式分解的方法,学生可通过自己的一系列练习实践去体会。故不需要在开头引入的地方多加铺垫,浪费了一定的时间。

    在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用 公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完 全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差 公式。如果是三项则优先考虑完全平方式进行因式分解。

    初一因式分解

    初二数学因式分解技巧:

    (一)运用公式法:

    我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因察世式。于是有:

    a2-b2=(a+b)(a-b)。

    a2+2ab+b2=(a+b)2。

    a2-2ab+b2=(a-b)2。

    如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法卜手叫做运用公式法。

    (二)平方差公式。

    平方差公式:

    (1)式子:a2-b2=(a+b)(a-b)。

    (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

    (三)因式分解。

    1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

    2、因式分解,必须进行到每一个多项式因式不能再分解为止。

    注意:

    ①项数为三项;有两项是两个数的的平方和,这两项的符号相同;有一项是这两个数的积的两倍。

    ②当多项式中有公因式时,应该先提出公因式,再用公式分解。

    ③完全平方公型没嫌式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

    ④分解因式,必须分解到每一个多项式因式都不能再分解为止。

    猜你喜欢