当前位置: 首页 > 北京自学网 > 高中

高中物理电磁场公式,高中物理磁场公式总结

  • 高中
  • 2023-06-18
目录
  • 高二物理电磁公式
  • 高中电场公式汇总
  • 高中物理电磁场公式加题型
  • 高中物理磁生电公式
  • 高中物理磁场公式总结

  • 高二物理电磁公式

    物理定理、定律、公式表

    一、质点的运动(1)------直线运动

    1)匀变速直线运动

    1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

    3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

    5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

    7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

    8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

    9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

    注:

    (1)平均速度是矢量;

    (2)物体速度大,加速度不一定大;

    (3)a=(Vt-Vo)/t只是量度式,不是决定式;

    (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

    2)自由落体运动

    1.初速度Vo=0 2.末速度Vt=gt

    3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

    注:

    (1)自由落轮陵体运动是初速度拍锋为零的匀加速直线运动,遵循匀变速直线运动规律;

    (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

    (3)竖直上抛运动

    1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

    3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

    5.往返时间t=2Vo/g (从抛出落回原位置的时间)

    注:

    (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

    (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

    (3)上升与下落过程具有对称性,如在同点速度等值反向等。

    二、质点的运动(2)----曲线运动、万有引力

    1)平抛运动

    1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

    3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

    5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

    6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

    合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

    7.合位移:s=(x2+y2)1/2,

    位移方向与水平夹角α:tgα=y/x=gt/2Vo

    8.水平方向加速度:ax=0;竖直方向加速度:ay=g

    注:

    (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

    (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

    (3)θ与β的关系为tgβ=2tgα;

    (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有袭桐晌加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

    2)匀速圆周运动

    1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

    3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

    5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

    7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

    8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

    注:

    (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

    (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

    3)万有引力

    1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

    2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)

    3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

    4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

    5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

    6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

    注:

    (1)天体运动所需的向心力由万有引力提供,F向=F万;

    (2)应用万有引力定律可估算天体的质量密度等;

    (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

    (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

    (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

    三、力(常见的力、力的合成与分解)

    1)常见的力

    1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

    2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

    3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

    4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

    5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)

    6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)

    7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

    8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

    9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

    注:

    (1)劲度系数k由弹簧自身决定;

    (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

    (3)fm略大于μFN,一般视为fm≈μFN;

    (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

    (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

    (6)安培力与洛仑兹力方向均用左手定则判定。

    2)力的合成与分解

    1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

    2.互成角度力的合成:

    F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

    3.合力大小范围:|F1-F2|≤F≤|F1+F2|

    4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

    注:

    (1)力(矢量)的合成与分解遵循平行四边形定则;

    (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

    (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

    (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

    (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

    四、动力学(运动和力)

    1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

    2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

    3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

    4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

    5.超重:FN>G,失重:FN

    6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

    注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

    五、振动和波(机械振动与机械振动的传播)

    1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

    2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

    3.受迫振动频率特点:f=f驱动力

    4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

    5.机械波、横波、纵波〔见第二册P2〕

    6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

    7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

    8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

    9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

    10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

    注:

    (1)物体的固有频率与振幅、驱动力频率无关,取决于振动本身;

    (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

    (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

    (4)干涉与衍射是波特有的;

    (5)振动图象与波动图象;

    (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

    六、冲量与动量(物体的受力与动量的变化)

    1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

    3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}

    4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

    5.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´

    6.弹性碰撞:Δp=0;ΔEk=0 {即的动量和动能均守恒}

    7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

    8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

    9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

    v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)

    10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

    11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

    E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

    注:

    (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

    (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

    (3)动量守恒的条件:合外力为零或不受外力,则动量守恒(碰撞问题、爆炸问题、反冲问题等);

    (4)碰撞过程(时间极短,发生碰撞的物体构成的)视为动量守恒,原子核衰变时动量守恒;

    (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

    七、功和能(功是能量转化的量度)

    1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

    2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

    3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

    4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

    5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

    6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

    7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

    8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

    9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

    10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

    11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

    12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

    13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

    14.动能定理(对物体做正功,物体的动能增加):

    W合=mvt2/2-mvo2/2或W合=ΔEK

    {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

    15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

    16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

    注:

    (1)功率大小表示做功快慢,做功多少表示能量转化多少;

    (2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

    (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

    (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

    八、分子动理论、能量守恒定律

    1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

    2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

    3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

    4.分子间的引力和斥力(1)r

    (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

    (3)r>r0,f引>f斥,F分子力表现为引力

    (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

    5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

    W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

    6.热力学第二定律

    克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

    开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

    7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

    注:

    (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

    (2)温度是分子平均动能的标志;

    3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

    (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

    (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

    (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

    (7)r0为分子处于平衡状态时,分子间的距离;

    (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

    九、气体的性质

    1.气体的状态参量:

    温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

    热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

    体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

    压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

    2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

    3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

    注:

    (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

    (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

    十、电场

    1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

    2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

    3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

    4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

    5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

    6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

    7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

    8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

    9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

    10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

    11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

    12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

    13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

    常见电容器〔见第二册P111〕

    14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

    15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

    类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

    抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

    注:

    (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

    (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

    (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

    (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

    (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

    (6)电容单位换算:1F=106μF=1012PF;

    (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

    (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

    十一、恒定电流

    1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

    2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

    3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}

    4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

    {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

    5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

    6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

    7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

    8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

    9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

    电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

    电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

    电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

    功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

    10.欧姆表测电阻

    (1)电路组成 (2)测量原理

    两表笔短接后,调节Ro使电表指针满偏,得

    Ig=E/(r+Rg+Ro)

    接入被测电阻Rx后通过电表的电流为

    Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

    由于Ix与Rx对应,因此可指示被测电阻大小

    (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

    (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

    11.伏安法测电阻

    电流表内接法:

    电压表示数:U=UR+UA

    电流表外接法:

    电流表示数:I=IR+IV

    Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真

    Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

    选用电路条件Rx>>RA [或Rx>(RARV)1/2]

    选用电路条件Rx<

    12.滑动变阻器在电路中的限流接法与分压接法

    限流接法

    电压调节范围小,电路简单,功耗小

    便于调节电压的选择条件Rp>Rx

    电压调节范围大,电路复杂,功耗较大

    便于调节电压的选择条件Rp

    注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

    (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

    (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

    (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

    (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

    (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

    十二、磁场

    1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m

    2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

    3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

    4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

    (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

    (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

    注:

    (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

    (2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

    十三、电磁感应

    1.[感应电动势的大小计算公式]

    1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

    2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

    3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

    4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

    2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

    3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

    *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

    注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

    十四、交变电流(正弦式交变电流)

    1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

    2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

    3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

    4.理想变压器原副线圈中的电压与电流及功率关系

    U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

    5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损´=(P/U)2R;(P损´:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

    6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

    S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

    高中电场公式汇总

    高中物理电磁学公式如下:

    库仑定律:F=kQq/r²

    电场强度:E=F/q

    点电荷电场强度:E=kQ/r²

    匀强电场:E=U/d

    电势能数型:E₁ =qφ

    电势差:U₁ ₂=φ₁-φ₂

    静电力做功:W₁₂=qU₁₂

    电容定义式:C=Q/U

    电容:C=εS/4πkd

    带电粒子在匀强电场中的运动

    加速匀强电场:1/2*mv² =qU

    v² =2qU/m

    偏转匀强电场

    运动时间:t=x/v₀

    垂直加速度:a=qU/md

    垂直位移:y=1/2*at₂ =1/2*(qU/md)*(x/v₀)²

    偏转角:θ=v⊥/v₀=qUx/md(v₀)²

    微观电流:I=nesv

    电源非静电力做功:W=εq

    欧姆定律:薯穗猜I=U/R

    串联电路

    电流:I₁ =I₂ =I₃ = ……

    电压:U =U₁ +U₂ +U₃ + ……

    并联电路

    电压:U₁=U₂=U₃= ……

    电流:I =I₁+I₂+I₃+ ……

    电阻串联:R =R₁+R₂+R₃+ ……

    电阻并联:1/R =1/R₁+1/R₂+1/R₃+ ……

    焦耳定律:Q=I² Rt

    P=I² R

    P=U² /R

    电功率:W=UIt

    电功:P=UI

    电阻定律:R=ρl/S

    全电路欧姆定律:ε=I(R+r)

    ε=U外+U内

    安培力:F=ILBsinθ

    磁通量:Φ=BS

    电磁感应

    感应电动势:E=nΔΦ/Δt

    导线切割磁感线:ΔS=lvΔt

    E=Blv*sinθ

    感生电动势:E=LΔI/Δt

    电磁学简介

    电磁学是物理学的一个分支,起源于近代。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波,电磁场以及有关电荷族兄,带电物体的动力学等等。

    电磁学是研究电和磁的相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。

    高中物理电磁场公式加题型

    高中物理电磁学公式有如下:

    一、库仑定律:F=kQq/r²

    二、电场棚慎强度:E=F/q

    三、点电荷电链则敬场强度:E=kQ/r²

    四、匀强电场盯燃:E=U/d

    五、电场中:F=Eq=kq1q2/r² U=Ed W=Uq=Eqd

    六、磁场中:F=QBv=BIL I=Q/t

    高中物理磁生电公式

    物理,在很多人的眼里是理综成绩的“杀手”。那是因为高中物理知识点多,难度大,导致很多人对物理产生了恐惧心理,下面由我为整理高考物理 电场与磁场 知识点公式总结,希望对大家有所帮助!

    高考物理磁场公式总结

    1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m

    2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

    3.洛仑兹力f=qVB(注V⊥B);质谱仪 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

    4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

    (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

    (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,

    洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

    高考物理电场公式总结

    1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

    2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

    3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

    4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电游逗量}

    5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

    6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

    7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

    8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

    9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

    10.电势能的变化ΔEAB=EB-EA {带电体神手卖在电场中从A位置到B位置时电势能的差值}

    11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

    12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

    13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

    高考物理电场知识点

    1.有关场强E(电场线)、电势(等势面)、W=qU、动能与电势能的比较。

    2.带电粒子在电场中运动情况(加速、偏转类平抛)的比较,运动轨迹和方向(一直向前?往返?)的分析判别。[联系实际与综合]①直线加速器②示波器原理③静电除尘与选矿④滚筒式静电分选器⑤复印机与喷墨打印机⑥静电屏蔽⑦带电体的力学分析(综合平衡、牛顿第二定律、功能、单摆等)⑧带电体在电场和磁场中运动⑨氢原子的核外电子运行。

    电荷电荷守恒定律点电荷

    ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过薯拍电场发生的。电荷的多少叫电量。基本电荷。带电体电荷量等于元电荷的整数倍(Q=ne)

    ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。

    ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

    带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。

    高考物理知识点总结电场与磁场

    1.电磁场

    在电磁学里,电磁场是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。

    2.电磁场与电磁波

    电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。

    3.电磁场理论

    研究电磁场中各物理量之间的关系及其空间分布和时间变化的理论。人们注意到电磁现象首先是从它们的力学效应开始的。库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。A.-M.安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。

    1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场(2)非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场

    高考电场知识点归纳

    1.电荷 电荷守恒定律 点电荷

    ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷。带电体电荷量等于元电荷的整数倍(Q=ne)

    ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。

    ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

    带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。

    2.库仑定律

    在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为 ,其中比例常数叫静电力常量, 。(F:点电荷间的作用力(N),Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)

    库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。

    3.静电场 电场线

    为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

    电场线的特点:

    (a)始于正电荷 (或无穷远),终止负电荷(或无穷远);

    (b)任意两条电场线都不相交。

    电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。

    4.电场强度 点电荷的电场

    ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷 ,它所受到的电场力跟它所带电量的比值 叫做这个位置上的电场强度,定义式是,场强是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q:检验电荷的电量(C))

    电场强度 的大小,方向是由电场本身决定的,是客观存在的,与放不放检验电荷,以及放入检验电荷的正、负电量的多少均无关,既不能认为 与 成正比,也不能认为与 成反比。

    点电荷场强的计算式 ( r:源电荷到该位置的距离(m),Q:源电荷的电量(C))

    5.电势能 电势 等势面

    电势能由电荷在电场中的相对位置决定的能量叫电势能。

    电势能具有相对性,通常取无穷远处或大地为电势能和零点。

    由于电势能具有相对性,所以实际的应用意义并不大。而经常应用的是电势能的变化。电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。电场力对电荷做功的计算公式:,此公式适用于任何电场。电场力做功与路径无关,由起始和终了位置的电势差决定。

    高考物理电场知识点总结

    1.两种电荷(1)自然界中存在两种电荷:正电荷与负电荷.(2)电荷守恒定律

    2.库仑定律

    (1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.

    (2)适用条件:真空中的点电荷.

    点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.

    3.电场强度、电场线

    (1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.

    (2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:

    E=F/q方向:正电荷在该点受力方向.

    (3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.

    (4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.

    (5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.

    4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.

    5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.

    (1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.

    (2)沿着电场线的方向,电势越来越低.

    6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU

    7.等势面:电场中电势相等的点构成的面叫做等势面.

    (1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.

    (2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.

    (3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.

    8.电场中的功能关系

    (1)电场力做功与路径无关,只与初、末位置有关.

    计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.

    (2)只有电场力做功,电势能和电荷的动能之和保持不变.

    (3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.

    9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.

    高考物理电场与磁场知识点公式总结大全相关文章:

    1. 高考物理磁场公式及知识点总结

    2. 高中物理电场公式大全

    3. 高考物理磁场公式总结

    4. 高中物理电场磁场的重要知识点

    5. 高考物理知识点大锦

    6. 高考物理电磁场和电磁波知识点

    7. 高考物理知识点总结

    8. 高中物理磁场公式大全

    9. 高中物理知识点整理大全

    10. 高中物理磁场知识点归纳

    var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();

    高中物理磁场公式总结

    高中物理公式全

    物理定理、定律、公式表

    一、质点的运动(1)------直线运动

    1)匀变速直线运动

    1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as

    3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

    5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

    7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

    8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

    9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

    注:

    (1)平均速度是矢量睁陆;

    (2)物体速度大,加速度不一定大;

    (3)a=(Vt-Vo)/t只是量度式,不是决定式;

    (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

    2)自由落体运动

    1.初速度Vo=02.末速度Vt=gt

    3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

    注:

    (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

    (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

    (3)竖直上抛运动

    1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

    3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)

    5.往返时间t=2Vo/g (从抛出落回原位置的时间)

    注:

    (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

    (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

    (3)上升与下落过程具有对称性,如在同点速度等值反向等。

    二、质点的运动(2)----曲线运动、万有引力

    1)平抛运动

    1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

    3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

    5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

    6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

    合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

    7.合位移:s=(x2+y2)1/2,

    位移方向与水平夹角α:tgα=y/x=gt/2Vo

    8.水平方向加速度:ax=0;竖直方向加速度:ay=g

    注:

    (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

    (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

    (3)θ与β的关系为tgβ=2tgα;

    (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一逗灶直线上时,物体做曲线运动。

    2)匀速圆周运动

    1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

    3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

    5.周期与频率悉指顷:T=1/f 6.角速度与线速度的关系:V=ωr

    7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

    8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

    注:

    (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

    (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

    3)万有引力

    1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

    2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)

    3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

    4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

    5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

    6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

    注:

    (1)天体运动所需的向心力由万有引力提供,F向=F万;

    (2)应用万有引力定律可估算天体的质量密度等;

    (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

    (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

    (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

    三、力(常见的力、力的合成与分解)

    1)常见的力

    1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

    2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

    3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

    4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

    5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)

    6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)

    7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

    8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

    9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

    注:

    (1)劲度系数k由弹簧自身决定;

    (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

    (3)fm略大于μFN,一般视为fm≈μFN;

    (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

    (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

    (6)安培力与洛仑兹力方向均用左手定则判定。

    2)力的合成与分解

    1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

    2.互成角度力的合成:

    F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

    3.合力大小范围:|F1-F2|≤F≤|F1+F2|

    4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

    注:

    (1)力(矢量)的合成与分解遵循平行四边形定则;

    (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

    (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

    (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

    (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

    四、动力学(运动和力)

    1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

    2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

    3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

    4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

    5.超重:FN>G,失重:FN

    6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

    注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

    五、振动和波(机械振动与机械振动的传播)

    1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

    2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

    开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

    7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

    注:

    (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

    (2)温度是分子平均动能的标志;

    3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

    (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

    (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

    (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

    (7)r0为分子处于平衡状态时,分子间的距离;

    (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

    九、气体的性质

    1.气体的状态参量:

    温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

    热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

    体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

    压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

    2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

    3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

    注:

    (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

    (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

    十、电场

    1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

    2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

    3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

    4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

    5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

    6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

    7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

    8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

    9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

    10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

    11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

    12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

    13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

    常见电容器〔见第二册P111〕

    14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

    15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

    类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

    抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

    注:

    (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

    (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

    (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

    (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

    (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

    (6)电容单位换算:1F=106μF=1012PF;

    (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

    (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

    十一、恒定电流

    1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

    2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

    3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}

    4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

    {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

    5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

    6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

    7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

    8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

    9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

    电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

    电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

    电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

    功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

    10.欧姆表测电阻

    (1)电路组成 (2)测量原理

    两表笔短接后,调节Ro使电表指针满偏,得

    Ig=E/(r+Rg+Ro)

    接入被测电阻Rx后通过电表的电流为

    Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

    由于Ix与Rx对应,因此可指示被测电阻大小

    (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

    (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

    11.伏安法测电阻

    电流表内接法: 电流表外接法:

    电压表示数:U=UR+UA 电流表示数:I=IR+IV

    Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

    选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<

    12.滑动变阻器在电路中的限流接法与分压接法

    限流接法

    电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大

    便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp

    注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

    (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

    十二、磁场

    1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m

    2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

    3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

    4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

    (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

    (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);©解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

    注:

    (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

    (2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

    十三、电磁感应

    1.[感应电动势的大小计算公式]

    1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

    2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

    3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

    4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

    2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

    3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

    *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

    注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

    十四、交变电流(正弦式交变电流)

    1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)

    2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

    3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

    4.理想变压器原副线圈中的电压与电流及功率关系

    U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

    5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损´=(P/U)2R;(P损´:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

    6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

    S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

    注:

    (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

    (2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

    (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

    (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

    (5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。

    十五、电磁振荡和电磁波

    1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

    2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}

    注:

    (1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;

    (2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

    (3)其它相关内容:电磁场〔见第二册P215〕/电磁波〔见第二册P216〕/无线电波的发射与接收〔见第二册P219〕/电视雷达〔见第二册P220〕。

    十六、光的反射和折射(几何光学)

    1.反射定律α=i {α;反射角,i:入射角}

    2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}

    3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

    2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

    注:

    (1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

    (2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

    (3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;

    (4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

    (5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。

    十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)

    1.两种学说:微粒说(牛顿)、波动说(惠更斯)〔见第三册P23〕

    2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距{ :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}

    3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)

    4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕

    5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播〔见第三册P27〕

    6.光的偏振:光的偏振现象说明光是横波〔见第三册P32〕

    7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用〔见第三册P29〕

    8.光子说,一个光子的能量E=hν{h:普朗克常量=6.63×10-34J.s,ν:光的频率}

    9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}

    注:

    (1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;

    (2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。

    十八、原子和原子核

    1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;©极少数α粒子出现大角度的偏转(甚至反弹回来)

    2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

    3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}

    4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}

    5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕

    6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

    7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。

    注:

    (1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;

    (2)熟记常见粒子的质量数和电荷数;

    (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

    (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)

    眼花了么?

    猜你喜欢