九年级数学上册期末试卷?(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积. 解: 九年级上册期末考试数学题答案 一、那么,九年级数学上册期末试卷?一起来了解一下吧。
A. B. C. 1 D. 2
考点: 垂径定理;全等三角形的判定与性质.
分析: 根据垂径定理求差雀滚出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.
解答: 解:∵OD⊥AC,AC=2,
∴AD=CD=1,
∵OD⊥AC,EF⊥AB,
∴∠ADO=∠OFE=90°,
∵OE∥AC,
∴∠DOE=∠ADO=90°,
∴∠
DAO+∠DOA=90°,∠DOA+∠EF=90°,
∴∠DAO=∠EOF,
在△ADO和△OFE中,
,
∴△ADO≌△OFE(AAS),
∴OF=AD=1,
故选C.
点评: 本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.
8.如图,在矩形ABCD中,AB
A. 线段EF B. 线段DE C. 线段CE D. 线段BE
考点: 动点问题的函数图象.
分析: 作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论.
解答: 解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G.
由垂线段最短可知:当点E与点M重合时,即AE< 时,FE有最小值,与函数图象不符,故A错误;
由垂线段最短可知:当点E与点G重合时,即AEd> 时,DE有最小值,故B正确;
∵CE=AC﹣AE,CE随虚余着AE的增大而减小,故C错误;
由垂线段最短可知:当点E与点N重合时,即AE< 时,BE有最小值,与函数图象不符,故D错误;
故选:B.
点评岁姿: 本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键.
二、填空题(共4小题,每小题4分,满分16分)
9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为3πcm2.(结果保留π)
考点: 扇形面积的计算.
专题: 压轴题.
分析: 知道扇形半径,圆心角,运用扇形面积公式就能求出.
解答: 解:由S= 知
S= × π×32=3πcm2.
点评: 本题主要考查扇形面积的计算,知道扇形面积计算公式S= .
10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24m.
考点: 相似三角形的应用.
分析: 根据同时同地的物高与影长成正比列式计算即可得解.
解答: 解:设这栋建筑物的高度为xm,
由题意得, = ,
解得x=24,
即这栋建筑物的高度为24m.
故答案为:24.
点评: 本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.
11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.
考点: 二次函数的性质.
专题: 数形结合.
分析: 根据二次函数图象与一次函数图象的交点问题得到方程组 的解为 , ,于是易得关于x的方程ax2﹣bx﹣c=0的解.
解答: 解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),
∴方程组 的解为 , ,
即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.
故答案为x1=﹣2,x2=1.
点评: 本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣ , ),对称轴直线x=﹣ .也考查了二次函数图象与一次函数图象的交点问题.
12.对于正整数n,定义F(n)= ,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),Fk+1(n)=F(Fk(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.
(1)求:F2(4)=37,F2015(4)=26;
(2)若F3m(4)=89,则正整数m的最小值是6.
考点: 规律型:数字的变化类.
专题: 新定义.
分析: 通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可.
解答: 解:(1)F2(4)=F(F1(4))=F(16)=12+62=37;
F1(4)=F(4)=16,F2(4)=37,F3(4)=58,
F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16,
通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26;
(2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6.
故答案为:(1)37,26;(2)6.
点评: 本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.
三、解答题(共13小题,满分72分)
13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+( )﹣1.
考点: 实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
专题: 计算题.
分析: 原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可.
解答: 解:原式=﹣1+ ﹣1+2= .
点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.
考点: 相似三角形的判定.
专题: 证明题.
分析: 根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论.
一、选择题(本大题共8个小题,每小题3分,共24分)
1.方程x2-3=0的根是()
A.x=3 B.x1=3,x2=-3 C.x=D.x1= ,x2=-
2.对于函数y=- ,下列说法错误的是()
A.它的图象分布在二、四象限 B.它的图象既是轴对称图形又是中心对称图形
C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小
3. cos60°-sin30°+tan45°的值为()
A.2 B.-2 C.1 D.-1
4.关于x的一元二次方程x2-6x+2k=0有两个不相等的实数根,则实数k的取值范围是()
A.k≤B.k<C.k≥D.k>
5.某校为了解八年级学生每周课外阅读情况,随机调查了50名八年级学生,得到他们在某一周里课外阅读所用时间的数据,并绘制成频数分布直方图,如图所示,根据统计图,可以估计在这一周该校八年级学生平均课外阅读的时间约为()
A.2.8小时 B.2.3小时 C.1.7小时 D.0.8小时
6.如图,在Rt△ABC中,∠C=90°,∠A=30°,c=10,则下列不正确的是()
A.∠B=60° B.a=5 C.b=5D.tanB=
7.如图,AB∥CD,AC、BD、EF相交于点O,则图中相似三角形共有()
A.1对B.2对 C.3对 D.4对
8.如图,将矩形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于点E,则下列结论不一定成立的是()
A.AD=BC′ B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=
二、填空题(本大题共8个小题,每小题3分,共24分)
9.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,若一根电线杆的影长为2米,则电线杆为米.
10.若代数式(x-4)2与代数式9(4-x)的值相等,则x=.
11.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表:
节水量/m30.2 0.25 0.30.40.5
家庭数/个 2 46 7 1
请你估计这400名同学的家庭一个月节约用水的总量大滑滚约是 m3.
12.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD∶OD1= .
13.反比例函数y= 的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,那么k的值是 .
14.如图,在△ABC中,D是AB边上前让尺的一点,连接CD,请添加一个适当的条件 ,使△ABC∽△ACD.(只填一个即可)
15.如图,梯形护坡石坝的斜坡AB的坡度为1∶3,坡高BC为2米,则斜坡AB的长为米.
16.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,下列结论:①∠BAE=30°;②△ABE∽△ECF;③AE⊥EF;④△ADF∽△ECF.其中正确结论是 (填序号).
三、解答题(共72分)
17.(10分)解下列方程:
(1)2(x-5)=3x(x-5); (2)x2-2x-3=0.
18.(8分)已知慧高:关于x的方程2x2+kx-1=0.
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k值.
19.(9分)游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2 000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了400名学生;
(2)补全两个统计图;
(3)根据抽样调查的结果,估算该校2 000名学生中大约有多少人“一定会下河游泳”?
20.(9分)如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?
21.(12分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若S△AOB=4.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.
22.(12分)如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
23.(12分)如图1,用篱笆靠墙围成矩形花圃ABCD,墙可利用的长度为15 m,一面利用旧墙,其余三面用篱笆围,篱笆长为24 m,设平行于墙的BC边长为x m.
(1)若围成的花圃面积为40 m2时,求BC的长;
(2)如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且花圃面积为50 m2,请你判断能否围成花圃?如果能,求BC的长;如果不能,请说明理由.
参考答案
1.D2.D 3.C4.B5.B6.D7.C8.C
9.410.4或-511.13012.1∶213.-4
14.∠ACD=∠ABC或∠ADC=∠ACB,AC∶AB=AD∶AC等15.2 16.②③
17.(1)x1=5或x2= .
(2)x1=3,x2=-1.
18.(1)∵b2-4ac=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,
∴k2+8>0,即b2-4ac>0.
∴方程2x2+kx-1=0有两个不相等的实数根;
(2)令原方程的另一个根为x2,则
解得
即另一个根为 ,k的值是1.
19.(1)400;
(2)“一定不会”的人数为400×25%=100(名),
“家长陪同时会”的百分率为1-25%-12.5%-5%=57.5%,图略.
(3)根据题意得:2 000×5%=100(人).
答:该校2 000名学生中大约有100人“一定会下河游泳”.
20.过点A作AD⊥BC于D,根据题意得∠ABC=30°,∠ACD=60°,
∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB.
∵CB=50×2=100(海里),∴CA=100(海里),
在直角△ADC中,∠ACD=60°,∴CD= AC= ×100=50(海里).
故船继续航行50海里与钓鱼岛A的距离最近.
21.(1)由A(-2,0),得OA=2.
∵点B(2,n)在第一象限内,S△AOB=4,
∴ OA•n=4,∴n=4,
∴点B的坐标是(2,4).
设该反比例函数的解析式为y= (a≠0),
将点B的坐标代入,得4= ,∴a=8.
∴反比例函数的解析式为y= .
设直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得
解得 .
∴直线AB的解析式为y=x+2;
(2)在y=x+2中,令x=0,得y=2.
∴点C的坐标是(0,2),∴OC=2.
∴S△OCB= OC×2= ×2×2=2.
22.(1)∵ = ,即 ,
又∠A=∠D=90°,∴△ABE∽△DEF;
(2)∵∠D=∠FCG=90°,∠DFE=∠CFG,
∴△DEF∽△CGF,∴ = ,
∴CG=3DE=3× =6,
∴BG=BC+CG=4+6=10.
23.(1)依题意可知:AB=m,则
•x=40.解得x1=20,x2=4.
∵墙可利用的长度为15 m,∴x1=20舍去.
答:BC的长为4 m;
(2)不能围成花圃.理由:
依题意可知: •x=50,即x2-24x+150=0.
∵△=576-4×1×150=-24<0,
∴方程无实数根.
即不能围成花圃.
九年级数学期末考试之前,做好每一份数学试卷的习题,会让你在数学考场中如鱼得水。
苏科版九年级上册数学期末试题
一、填空题(每题2分,共24分.)
1.当x 时, 有意义.
2.计算: .
3.若x=1是关于方程x2-5x+c=0的一个根,则该方程的另一根是 .
4.抛物线 的顶点坐标是 .
5.如图,在□ABCD中,AC、BD相交于点O,点E是AB的中点,OE=3cm,纳扰则AD的长是 cm.
(第5题图) (第8题图) (第10题图)
6.等腰梯形的上底是4cm,下底是10cm,一个底角是60,则等腰梯形的腰长是 cm.
7.已知一个等腰三角形的两边长是方程x2-6x+8=0的两根,则该三角形的周长是 .
8.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是 .
9.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120,则圆锥的母线长是 .
10.如图,PA、PB是⊙O是切线,A、B为切点, AC是⊙O的直径,若∠BAC=25,则∠P=
度.
11.小张同学想用描点法画二次函数 的图象,取自变量x的5个值,请你指出这个算错的y值所对应的x= .
x-2 -1 0 1 2
y11 2 -1 2 5
12.将长为1 ,宽为a的矩形纸片( ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一 下,剪下一 个边长等于此时矩形宽 度的正方形(称为第二次操作);如此再操作一次,若在第3次操作后,剩下的矩形为正方形,则 a的值为¬¬¬¬¬¬ .
二、选择题:(本大题共5小题,每小题3分,共15分)
13.将二次函数 化为 的形式,结果正确的是
A. B.
C. D.
14.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得: 甲= 乙,S2甲=0.025,S2乙=0.026,下列说法正确的是
C. 甲比乙短跑成绩稳定 D. 乙比甲短跑成绩稳定
15. 若关于 的方程 有两个不相等的实数根,则 的取值范围是
A. B. 且
C. D. 且
16.若两圆的直径分别是2cm和10cm,圆心距为8cm,则这两个圆的位置关系是
A.内切 B.相交 C.外切 D.外离
17.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论
中正确的是
A.当x>1时,y随x的增大而增大
B.3是方程ax2+bx+c=0的一个根
C.a c>0
D.a+b+c<0
三、解答题世茄搜:
18.(本题5分)计算:
19.(本题5分)化简: ( ).
20.(本题10分,每小题5分)用适当的方法解下列方程:
(1)x2-5x-6=0; (2)4x(2x-1)=3(1-2x).
21.(本题6分)
(1)若五个数据2,-1 ,3 , ,5的极差为8,求 的值;
(2)已知六个数据-3,-2,1,3,6, 的平均数为1,求这组数据的方差.
22.(本题6分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;
(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是 下列图形中的哪一种?①平行四边形;②菱形;③矩形;
(2)请证明你的结论;
23.(本题8分)已知二次函数 的图象与x轴有两个交点.
(1)求k的取值范围;
(2)如果k取上面条件中的最大整数,且一元二次方程 与 有一个相同的根,求常数m的值.
24.(本题8分)已知二次函数 的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)在如图所示的直角坐标系中画搜历出C1的大致图象。
这篇关于《九年级数学上册期末试题》,是 无 特地为大家整理的,希望对大家有所帮助!
一、选择题:(本题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的,不选、多选、错选均不给分.
1.若反比例函数 的图象经过点(-5,2),则 的值为 ( ).
A.10B.-10 C.-7 D.7
2. 把一块直尺与一块三角板如图放置,若 ,则∠2的度数为()
A.120° B.135°C.145°D.150°
3.某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是( )
A.B. C. D.
4.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点
D,AC=6,则OD的长为()
A.2 B.3C.3.5D.4
5.将抛物线 向左平移2个单位后所得到的抛物线为()
A.B.C. D.
6.小明沿着坡比为1: 的山坡向上走了600m,则他升高了( )
A. m B.200 mC.300 mD.200m
7.如图,圆锥的底面半径 高 则这个圆锥的侧面积是()
A. B. C. D.
8.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()
A.12 m B.13.5 m C.15 m D.16.5 m
9.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是().
A.B.若MN与⊙O相切,则
C.l1和l2的距离为2D.若∠MON=90°,则MN与⊙O相切
10. 如图,AC=BC,点D是以线段AB为 弦的圆弧的中点,AB=4,点E是线段CD上任意一点手州,点F是线段AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是()
二、填空题:(本题有6小题,每小题4分,共24分)
11.若 ,则 .
12.如图,⊙O的半径为5,弦AB=8,动点M在弦AB上运动(可运动至A和B),设OM=x,则x的取值范围是 .
13.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线 上,点N在直线y=x+3上,设则抛物线y=﹣旁薯粗abx2+(a+b)x的顶点坐标是.
14.如图,甲楼AB的高度为20米,自甲楼楼顶A处,测运镇得乙楼顶端C处的仰角为450,测得乙楼底部D处的俯角为300,则乙楼CD的高度是米.
15.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE= ,CF= ,则正方形ABCD的面积为.
16.如图所示,点 、 、 在 轴上,且 ,分别过点 、 、 作 轴的平行线,与反比例函数 的图像分别交于点 、 、 ,分别过点 、 、 作 轴的平行线,分别与轴交于点 、 、 ,连接 、 、 ,那么图中阴影部分的面 积之 和为.
三、解答题:(本题有8个小题,共66分)
17.(本题6分)计算:
18.(本题6分)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD= ,坡长AB= ,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F= ,求AF的长度.
19.(本题6分)如图,已知一次函数 与反比例函数 的图象交于A、B两点.(1)求A、B两点的坐标;
(2)观察图象,请直接写出一次函数值小于反比例函数值的 的取值范围.
20.(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“2 0元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
21.(本题8分))如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E, ,延长DB到点F,使 ,连接AF.
(1)证明:△BDE∽△FDA;
(2)试判断直线AF与⊙O的位置关系,并给出证明.
22.(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.
23.(本题10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: ,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得利润?每月的利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)
24.(本题12分)抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点 D,当△BDC的面积时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(全卷满分120分,考试时间120分钟)
题号 一 二 三 总分
1—10 11—16 17 18 19 20 21 22 23 24
得分
阅卷人
一、选择题:(本题有10小题,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 B B A B D C C D B C
二、填空题:(本题有6小题,每小题4分,共24分)
11. 12. 3≤x≤513. ( , )
14. 15. 16.
三、解答题:(本题有8个小题,共66分)
17.(本题6分)计算:
解: =………………3分
= …………………………………………………1分
=…………………………………………………2分
18.(本题6分)解:过B作BE⊥AD于E,在Rt△ABE中,
∵∠BAE= ,∴∠ABE=
∴AE= AB (m) ………………………………1分
∴BE (m)…………………2分
∴在Rt△BEF中, ∠F= ,
∴EF=BE=30 ………………2分
∴AF=EF-AE=30- (m)
………………………………1分
19.(本题6分)
解:(1)由题意得: 解之得:或……………2分
∴A、B两点坐标分别为A 、B ……2分
(2) 的取值范围是: 或 ………………………………2分
20.(本题8分)
解:(1)10,50。
对于九年级数学的复习,需要制定详细的计划,踏踏实实地做好数学期末试题,才能取得好成绩。以下是我为你整理的九年级上册期末考试数学题,希望对大家有帮助!
九年级上册期末考试数学题
一、选择题(共8道小题,每小题4分,共32分)
下面各题均有四个选项,其衫乎兄中只有一个是符合题意的.
1. 的相反数是 ( )
A. B.3 C. D.
2.已知, 中,∠C=90°,sin∠A= ,则∠A 的度数是 ( )
A.30° B.45° C.60° D. 90°
3.若反比例函数 的图象位于第二、四象限内,则 的取值范围是 ( )
A. B. C. D.
4.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为( ).
A. 8 B.6 C.4 D.10
5.如图,D是 边AB上一点,则下列四个条件不能单独判定 的是( )
A. B. C. D.
6.如图,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影或袭部分的概率是 ( )
A. B. C. D.
7.如图,BC是⊙O的直径,A、D是⊙ 上两点,若∠D = 35°,则∠OAC的度数是 ( )
A.35° B.55° C.65° D.70°
8.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是 ( )
二、填空题(共4道小题,每小题4分,共16分)
9.如图,在△ABC中,DE∥BC,若DE=1,BC=3,那么△ 与△ 面积的比为 .
10.如图,点A、B、C是半径为3cm的⊙O上三个点,且 , 则劣弧 的长
是 .
11.如图所示,边长为顷运1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,
则∠AED的正弦值等于 .
12.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填
整数之和都相等,则第99个格子中的数为 ,2012个格子中的数为 .
3 a b c -1 2 …
三、解答题(本题共30分,每小题5分)
13.计算:
14.已知抛物线 .
(1)用配方法把 化为 形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,
抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
解
15.解不等式: 4(x+1)≤5x+8,并把它的解集在数轴上表示出来.
解:
16.如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.
求cos∠C.
解:
17. 以直线 为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.
解:
18.如图,在 中, ,在 边上取一点 ,使 ,过 作 交AC于E,AC=8,BC=6.求DE的长.
解:
四、解答题(本题共20分,每小题5分)
19.如图,小明在十月一日到公园放风筝,风筝飞到 处时的线长为20米,
此时小明正好站在A处,并测得 ,牵引底端 离地面1.5米,
求此时风筝离地面的高度.
解:
20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).
甲超市.
球 两 红 一红一白 两 白
礼金券(元) 20 50 20
乙超市:
球 两 红 一红一白 两 白
礼金券(元) 50 20 50
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
解:
21. 如图, 是⊙O的直径, 是弦, ,延长 到点 ,使得∠ACD=45°.
(1)求证: 是⊙O的切线;
(2)若 ,求 的长.
证明:
22.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.
(1)求半圆O的半径;
(2)求图中阴影部分的面积.
解:
五、解答题(本题共22分,23题7分,24题7分,25题8分)
23.如图所示,在直角坐标系中,点 是反比例函数 的图象上一点, 轴的正半轴于 点, 是 的中点;一次函数 的图象经过 、 两点,并交 轴于点 若
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出在 轴的右侧,当 时 的取值范围,当 < 时 的取值范围.
解:
24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,
旋转后的矩形记为矩形 .在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为 ;
(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);
(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.
(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.
图① 图② 图③
解:
25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).
(1)求此抛物线的解析式;
(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;
(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.
解:
九年级上册期末考试数学题答案
一、选择题(共8道小题,每小题4分,共32分)
下面各题均有四个选项,其中只有一个是符合题意的.
题 号 1 2 3 4 5 6 7 8
答 案 D C B A C A B C
二、填空题(本题共16分,每小题4分)
题号 9 10 11 12
答案 π 2; -1
三、解答题(本题共30分,每小题5分)
13.计算:
解: 原式= …………………………4分
=
= ………………………………………………5分
14.已知抛物线 .
(1)用配方法把 化为 形式;
(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,
抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.
解(1)
=x2-2x+1-1-8
=(x-1)2 -9.………………………………………………3分
(2)抛物线的顶点坐标是 (1,-9)
抛物线的对称轴方程是 x=1 ……………………………4分
抛物线与x轴交点坐标是(-2,0)(4,0);
当x >1 时,y随x的增大而增大. ………………………………5分
15.解不等式: 4(x+1)≤5x+8,并把它的解集在数轴上表示出来.
解: 去括号,得 4x+4≤5x+8 ……………………………… 1分
移项、合并同类项,得-x≤4……………………………… 3分
系数化为1,得 ≥ ……………………………… 4分
不等式的解集在数轴上表示如下:
………………… 5分
16.如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.
求cos∠C.
解:方法一、作DE⊥BC,如图1所示,…………1分
∵AD∥BC,AB⊥BC,AB=AD=3,
∴四边形ABED是正方形.…………………2分
∴DE=BE=AB=3.
又∵BC=7,
∴EC=4,……………………………………3分
由勾股定理得CD=5.…………………………4分
∴ cos∠C= .…………………………5分
方法二、作AE∥CD,如图2所示,……………1分
∴∠1=∠C,
∵AD∥BC,
∴四边形AECD是平行四边形.………………2分
∵AB=AD=3,
∴EC=AD=3,
又∵BC=7,
∴BE=4,……………………………………3分
∵ AB⊥BC,由勾股定理得AE=5. ………………4分
∴ cos∠C= cos∠1= . …………………………5分
17. 以直线 为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.
解:设抛物线的解析式为 , ………………………………………1分
抛物线过点A(3,0)和B(0,3). ∴ 解得 … ………4分
∴抛物线的解析式为 . ……………………………………5分
18.如图,在 中, ,在 边上取一点 ,使 ,过 作 交 于 , .求DE的长.
解:在 中, ,
.…………………2分
又 ,
.
,
.
又 ,
.………………………………4分
.
………………………5分
四、解答题(本题共20分,每小题5分)
19.如图,小明在十月一日到公园放风筝,风筝飞到 处时的线长为20米,
此时小明正好站在A处,并测得 ,牵引底端 离地面1.5米,
求此时风筝离地面的高度.
解:依题意得, ,
∴四边形 是矩形 ,…………1分
……………2分
在 中, ……………3分
又∵ , ,
由
∴ .……………4分
.………………………………………5分
即此时风筝离地面的高度为 米 .
20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).
甲超市.
球 两 红 一红一白 两 白
礼金券(元) 20 50 20
乙超市:
球 两 红 一红一白 两 白
礼金券(元) 50 20 50
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
解:(1)树状图为:
…………2分
(2)∵去甲超市购物摸一次奖获50元礼金券的概率是P(甲)= = ,…………3分
去乙超市购物摸一次奖获50元礼金券的概率是P(乙)= = ……………………4分
∴我选择去甲超市购物……………………………………………………………………5分
21. 如图, 是⊙O的直径, 是弦, ,延长 到点 ,使得∠ACD=45°.
(1)求证: 是⊙O的切线;
(2)若 ,求 的长.
(1)证明:连接 .
∵ , ,
,
. ……………………1分
∵ ,
,
. ……………………2分
又∵点 在⊙O上,
∴ 是⊙O的切线 .……………………3分
(2)∵直径 ,
. …………… 4分
在 中, ,
∴ ,
∵ ,
.……………………5分
22.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.
(1)求半圆O的半径;
(2)求图中阴影部分的面积.
解:(1)解:连结OD,OC,
∵半圆与AC,BC分别相切于点D,E.
∴ ,且 .…………………1分
∵ ,
∴ 且O是AB的中点.
∴ .
∵ ,∴ .
∴ .
∴在 中, .
即半圆的半径为1. ……………………………………….3分
(2)设CO=x,则在 中,因为 ,所以AC=2x,由勾股定理得:
即
解得 ( 舍去)
∴ . …………………….4分
∵ 半圆的半径为1,
∴ 半圆的面积为 ,
∴ . ….…………………………….5分
五、解答题(本题共22分,23题7分,24题7分,25题8分)
23.如图所示,在直角坐标系中,点 是反比例函数 的图象上一点, 轴的正半轴于 点, 是 的中点;一次函数 的图象经过 、 两点,并交 轴于点 若
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出在 轴的右侧,当 时 的取值范围,当 < 时 的取值范围.
解:作 轴于
∵
∴
∴ . ………………………………………1分
∵ 为 的中点,
∴ .
∴ .…………………………………3分
∴ . ∴A(4,2).
将A(4,2)代入 中,得 . . ……………4分
将 和 代入 得 解之得:
∴ .…………………………………………………………………5分
(2)在 轴的右侧,当 时, ………………………6分
当 < 时 >4. ……………………………………………………7分
24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,
旋转后的矩形记为矩形 .在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为 ;
(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);
(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.
(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.
图① 图② 图③
解:(1) (4, ) ………………………………………………1分
(2) …………………………………………………………………2分
(3)设 ,则 , ,
在Rt△ 中,∵ ,∴ ,
解得 ,即 .
∴ (4, ). …………………………………………………………4分
(4)设以点 为顶点的抛物线的解析式为 .
把 (0,6)代入得, .
解得, .
∴此抛物线的解析式为 .……………………………………6分
∵矩形 的对称中心为对角线 、 的交点 ,
∴由题意可知 的坐标为(7,2).
当 时, ,
∴点 不在此抛物线上. ………………………………………………7分
25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).
(1)求此抛物线的解析式;
(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;
(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.
解:(1)设抛物线为 .
∵抛物线经过点 (0,3),∴ .∴ .
∴抛物线为 . …………2分
(2) 答: 与⊙ 相交. ……………………………………3分
证明:当 时, , .
∴ 为(2,0), 为(6,0).
∴ .
设⊙ 与 相切于点 ,连接 ,
则 .
∵ ,∴∠ABO+∠CBE=90°.
又∵∠ABO+∠BAO=90°,
∴ .∴ ∽ .
∴ .∴ .∴ .…………4分
∵抛物线的对称轴 为 ,∴ 点到 的距离为2.
∴抛物线的对称轴 与⊙ 相交. …………………5分
(3) 解:如图,过点 作平行于 轴的直线交 于点 .
由点A(0,3)点C(6,0)可求出直线 的解析式为 .………………6分
设 点的坐标为( , ),则 点的坐标为( , ).
∴ .
∵ ,
∴当 时, 的面积最大为 .
此时, 点的坐标为(3, ). …………………8分
解答(3)的关键是作PQ∥y轴交AC于Q,以PQ为公共底,OC就是高,用抛物线、直线解析式表示P、Q两点的纵坐标,利用三角形的面积推导出面积与P点横坐标m的函数关系式,
即: .
评分说明:部分解答题有多种解法,以上各题只给出了部分解法,学生的其他解法可参照评分标准给分.
以上就是九年级数学上册期末试卷的全部内容,初三数学参考答案与评分标准 一、选择题 1.D 2.C 3.C 4.C 5.D 6.B 7.B 8.D 9.B 10.A 二、填空题 11.x≤2 12.5 13.2,43 14.6 5 15.24,240π 16.10 17.2π3 18.3-3 三、。