当前位置: 首页 > 上海自学网 > 初中 > 八年级 > 初二

数学八年级下册知识点总结,初二数学下册每章知识点总结

  • 初二
  • 2023-04-17
目录
  • 八年级下册数学重点知识
  • 数学八年级下册人教版知识点总结
  • 八年级数学下册知识归纳
  • 数学八下册知识点归纳
  • 地理书八年级人教版

  • 八年级下册数学重点知识

    马上期末考试了,好多同学想要八年级数学下册的知识点,以便复习备考。下面我整理了初中八年级下册数学知识点,大家可以对照复习,供大家参考。

    几何知识点

    1、旋转和平移

    平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。

    旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。

    2、平行四边形

    平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。

    3、特殊平行四边形行

    特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。这就需要同学们运用对比分析竖首的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。

    整式的加减

    1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数激改或一个字母也是单项式。

    2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

    3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

    4、几个单项的和明纤判叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。

    5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

    6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

    7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

    8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

    9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

    轴对称知识点

    1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

    2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

    3.角平分线上的点到角两边距离相等。

    4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

    5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

    6.轴对称图形上对应线段相等、对应角相等。

    7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

    8.点(x,y)关于x轴对称的点的坐标为(x,-y)

    点(x,y)关于y轴对称的点的坐标为(-x,y)

    点(x,y)关于原点轴对称的点的坐标为(-x,-y)

    9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

    等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

    10.等腰三角形的判定:等角对等边。

    11.等边三角形的三个内角相等,等于60,

    12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

    有一个角是60的等腰三角形是等边三角形

    有两个角是60的三角形是等边三角形。

    13.直角三角形中,30角所对的直角边等于斜边的一半。

    分解因式

    一、公式:1、ma+mb+mc=m(a+b+c);

    2、a2-b2=(a+b)(a-b);

    3、a22ab+b2=(ab)2。

    二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

    1、把几个整式的积化成一个多项式的形式,是乘法运算。

    2、把一个多项式化成几个整式的积的形式,是因式分解。

    3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

    三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.

    四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.

    五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

    分解因式的方法:1、提公因式法.2、运用公式法。

    数学八年级下册人教版知识点总结

    八年级下学期数学知识点

    在日常的学习中,很多人都经常追着老师们要知识点吧,知识点是指某个模块知识的重点、核心内容、关键部分。还在为没有的知识点而发愁吗?下面是我为大家整理的八年级下学期数学知识点,希望能够帮助到大家。

    一元一次不等迅改乎式和一元一次不等式组

    一、一般地,用符号(或),(或)连接的式子叫做不等式。

    能使不等式成立的未知数的值,叫做不等式的解。不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集。求不等式解集的过程叫解不等式。

    由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

    不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

    等式基本性质1:在等式的两边都加上(或减去)同一个数或整式亩悉,所得的结果仍是等式。

    基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。

    二、不等式的基本性质

    性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(注:移项要变号,但不等号不变。)

    性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

    性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

    三、解不等式的步骤

    1、去分母;

    2、去括号;

    3、移项合并同类项;

    4、系数化为1。

    四、解不等式组的步骤

    1、解出不等式的解集

    2、在同一数轴表示不等式的解集。

    五、列一元一次不等式组解实际问题的一般步骤:

    (1)审题;

    (2)设未知数,找(不等量)关系式;

    (3)设元,(根据不等量)关系式列不等式(组)

    (4)解不等式组;检验并作答。

    六、常考题型:

    1、求4x—6 7x—12的非负数解。

    2、已知3(x—a)=x—a+1r的解适合2(x—5)8a,求a的范围。

    3、当m取何值时,3x+m—2(m+2)=3m+x的解在—5和5之间。

    函数及其相关概念

    1、变量与常量

    在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

    一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

    2、函数解析式

    用来表示函数关系的数学式子叫做函数解析式或函数关系式。

    使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

    3、函数的三种表示法及其优缺点

    (1)解析法

    两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

    (2)列表法

    把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

    (3)图像法

    用图像表示函数关系的方法叫做图像法。

    4、由函数解析式画其图像的一般步骤

    (1)列表:列表给出自变量与函数的一些对应值

    (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

    (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

    数学的学习方法

    1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时歼余复习、独立作业、解决疑难、小结和课外学习几个方面。

    2、及时了解、掌握常用的.数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

    3、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

    4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

    如何建立数学思维方式

    到了初中,数学出现了很多新的知识点,也是重点考点和关键难点,比如性的开始学习几何知识,首次引入函数的概念并求解一般的线性函数问题,这些对于初中生来说既是全新的,又是有一定难度的。这就需要学生创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。

    ;

    八年级数学下册知识归纳

    学习从来无捷径。每一门科目都有自己的学习 方法 ,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初二数学下册的知识点,希望对大家有所帮助。

    初二下册判雹数学知识点归纳北师大版

    第一章分式

    1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

    2、分式的运算

    (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

    (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

    3、整数指数幂的加减乘除法

    4、分式方程及其解法

    第二章反比例函数

    1、反比例函数的表达式、图像、性质

    图像:双曲线

    表掘物帆达式:y=k/x(k不为0)

    性质:两支的增减性相同;

    2、反比例函数在实际问题中的应用

    第三章勾股定理

    1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

    2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

    初二下册数学知识点

    1、平行四边形

    性质:对边相等;对角相等;对角线互相平分。

    判定:两组对边分别相等的四边形是平行四边形;

    两组对角分别相等的四边形是平行四边形;

    对角线互相平分的四边形是平行四边形;

    一组对边平行而且相等的四边形是平行四边形。

    推论:三角形的中位线平行第三边,并且等于第三边的一半。

    2、特殊的平行四边形:矩形、菱形、正方形

    (1)矩形

    性质:矩形的四个角都是直角;

    矩形的对角线相等;

    矩形具有平行四边形的所有性质

    判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

    推论:直角三角形斜边的中线等于斜边的一半。

    (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的蚂乱一切性质

    判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

    (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

    3、梯形:直角梯形和等腰梯形

    等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

    第五章数据的分析

    加权平均数、中位数、众数、极差、方差

    初二数学三角形知识点归纳

    【直角三角形】

    ◆备考兵法

    1.正确区分勾股定理与其逆定理,掌握常用的勾股数.

    2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.

    3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.

    4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.

    5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路.

    【三角形的重心】

    已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

    证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

    重心的几条性质:

    1.重心和三角形3个顶点组成的3个三角形面积相等。

    2.重心到三角形3个顶点距离的平方和最小。

    3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3

    4重心到顶点的距离与重心到对边中点的距离之比为2:1。

    5.重心是三角形内到三边距离之积的点。

    如果用塞瓦定理证,则极易证三条中线交于一点。

    初二数学下册知识点相关文章:

    ★初二数学下册知识点归纳与数学学习方法

    ★八年级下册数学知识点整理

    ★初二数学下册知识点人教版

    ★初二数学下册重点知识总结

    ★初二下册数学重点知识点归纳

    ★八年级下册数学知识点归纳

    ★八年级下册数学知识点总结归纳

    ★初二下册数学知识点

    ★初二下数学知识点

    ★八年级下册的数学知识点

    数学八下册知识点归纳

    初二下册数学知识点有哪些你知道吗?初二是学习数学的一个关键时期,想要学好数学需要有一个好的学习 方法 ,其实最简单又有效的学习方法就是对知识点进行归纳总结了。一起来看看初二下册数学知识点,欢迎查阅!

    初二下册数学总结

    第一章分式

    1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

    2分式的运算

    (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

    (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

    3整数指数幂的加减乘除法

    4分式方程及其解法

    第二章反比例函数

    1反比例函数的表达式、图像、性质

    图像:双曲线

    表达式:y=k/x(k不为0)

    性质:两支的增减性相同;

    2反比例函数在实际问题中的应用

    第三章勾股定理

    1勾股定理:直角三角形的`两个直角边的平方和等于斜边的平方

    2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

    第四章四边形

    1平行四边形

    性质:对边相等;对角相等;对角线互相平分。

    判定:两组对边分别相等的四边形是平行四边形;

    两组对角分别相等的四边形是平行四边形;

    对角线互相平分的四边形是平行四边形;

    一组对边平行而且相等的四边形是平行四边形。

    推论:三角形的中位线平行第三边,并且等于第三边的一半。

    2特殊的平行四边形:矩形、菱形、正方形

    (1)矩形

    性质:矩形的四个角都是直角;

    矩形的对角线相等;

    矩形具有平行四边形的所有性质

    判定:有一个角是直角如或饥的平行四边形是矩形;对角线相等的平行四边形是矩形;

    推论:直角三角形斜边的中线等于斜边的一半。

    (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

    判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

    (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

    3梯形:直角梯形和等腰梯形

    等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

    第五章数据的分析

    加权平均数、中位渣返数、众数、极差、方差

    初二必备数学知识

    位置与坐标

    1、确定位置

    在平面内,确定物体的位置一般需要两个数据。

    2、平面直角坐标系及有关概念

    ①平面直角坐标系

    在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

    ②坐标轴和象限

    为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

    注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

    ③点的坐标的概念

    对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

    平面内点的与有序实数对是一一对应的。

    ④不同位置的点的坐标的特征

    a、各团笑象限内点的坐标的特征

    点P(x,y)在第一象限→ x>0,y>0

    点P(x,y)在第二象限 → x<0,y>0

    点P(x,y)在第三象限 → x<0,y<0

    点P(x,y)在第四象限 → x>0,y<0

    b、坐标轴上的点的特征

    点P(x,y)在x轴上 → y=0,x为任意实数

    点P(x,y)在y轴上 → x=0,y为任意实数

    点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

    c、两条坐标轴夹角平分线上点的坐标的特征

    点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

    点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

    d、和坐标轴平行的.直线上点的坐标的特征

    位于平行于x轴的直线上的各点的纵坐标相同。

    位于平行于y轴的直线上的各点的横坐标相同。

    e、关于x轴、y轴或原点对称的点的坐标的特征

    点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

    点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

    点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

    f、点到坐标轴及原点的距离

    点P(x,y)到坐标轴及原点的距离:

    点P(x,y)到x轴的距离等于 ?y?

    点P(x,y)到y轴的距离等于 ?x?

    点P(x,y)到原点的距离等于 √x2+y2

    初二数学常考知识

    一次函数

    1、函数

    一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

    2、自变量取值范围

    使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

    3、函数的三种表示法及其优缺点

    关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

    列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

    图象法用图象表示函数关系的方法叫做图象法。

    4、由函数关系式画其图像的一般步骤

    列表:列表给出自变量与函数的一些对应值。

    描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

    连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

    5、正比例函数和一次函数

    ①正比例函数和一次函数的概念

    一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

    特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。②一次函数的图像:

    所有一次函数的图像都是一条直线。

    ③一次函数、正比例函数图像的主要特征

    一次函数y=kx+b的图像是经过点(0,b)的直线;

    初二下册数学知识点相关文章:

    ★八年级下册数学知识点整理

    ★初二数学下册知识点归纳与数学学习方法

    ★八年级下册数学知识点总结归纳

    ★初二数学知识点整理归纳

    ★八年级数学知识点整理归纳

    ★八年级数学知识点总结

    ★初二数学知识点复习整理

    ★初二数学知识点小结

    ★初中数学八年级重点

    ★初二数学知识点归纳上册人教版

    地理书八年级人教版

    学习八年级下册数学要整理好重要的知识点。下面是我为大家整编的八年级数学下册知识点整理,大家快来看看吧。

    八年级下册数学知识点整理:第一章 分式

    1 分式及其基本性质

    分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2 分式的运算

    (1)分式的乘除

    兆掘乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

    (2) 分式的加减

    加减法法则:同分母分式相加减,分母不变,把分子相加减;

    异分母分式相加减,先通分,变为同分母的分式,再加减 3 整数指数幂的加减乘除法

    4 分式方程及其解法

    八年级下册数学知识点整理:第二章 反比例函数

    1 反比例函数的表达竖搭式、图像、性质

    图像:双曲线

    表达式:y=k/x(k不为0)

    性质:两支的增减性相同;

    2 反比例函数在实际问题中的应用

    八年级下册数学知识点整理:第三章 勾股定理

    1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

    2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

    八年级下册数学知识点整理:第四章 四边形

    1 平行四边形

    性质:对边相等;对角相等;对角线互相平分。

    判定:两组对边分别相等的四边形是平行四边形;

    两组对角分别相等的四边形是平行四边形;

    对角线互相平分的四边形是平行四边形;

    一组对边平行而且相等的四边形是平行四边形。

    推论:三角形的中位线平行第三边,并且等于第三边的一半。

    2 特殊的平行四边形:矩形、菱形、正方形

    (1) 矩形

    性质:矩形的四个角都是直角;

    矩形的对角线相等;

    矩形具有平行四边形的所有性质

    判定: 有一个角是直角的平行四边形是矩形;

    对角线相等的平行四边形是矩形;

    推论: 直角三角形斜边的中线等于斜边的一半。

    (2) 菱形

    性质:菱形的四条边都相等;

    菱形的对角线互相垂直,并且每一条对角线平分一组对角;

    菱形具有平行四边形的一切性质

    判定:有一组邻边相等的平行四边形是菱形;

    对角线互相垂直的平行四边形是菱形;

    四边相等的四边形是菱形。

    (3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和余猜拿菱形的所有性质。

    3 梯形:直角梯形和等腰梯形

    等腰梯形:等腰梯形同一底边上的两个角相等;

    等腰梯形的两条对角线相等;

    同一个底上的两个角相等的梯形是等腰梯形。

    八年级下册数学知识点整理:第五章 数据的分析

    加权平均数、中位数、众数、极差、方差

    1.定义:形如y=k1(k为常数,k≠0)的函数称为反比例函数。

    2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

    3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

    当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

    4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

    猜你喜欢