高一数学对数?对数是高一数学必修一学的。对数的运算法则:1、log(a) (M·N)=log(a) M+log(a) N 2、log(a) (M÷N)=log(a) M-log(a) N 3、log(a) M^n=nlog(a) M 4、log(a)b*log(b)a=1 5、log(a) b=log (c) b÷log (c) a 对数应用 对数在数学内外有许多应用。那么,高一数学对数?一起来了解一下吧。
或念陪原裂高颤肆败式=-log(5,4)*[-log(4,5)]=log(5,4)*log(4,5)=1
log5 1/4=lg1/4/lg5=-lg4/lg5
log4 1/5=lg1/5/lg4=-lg5/lg4
所以两式神嫌相雀或乘游岁手为1
⑴使用变化的基本公式,该公式将取代所有的基地10个对数:
原式= lg27/lg4×lg8/lg25×lg5/lg9
= LG3 3 / LG2 2×LG2 3 / LG5 2×lg5/lg3 2
=(3lg3)/(2lg2)×(3lg2)/(2lg5)×(lg5/2lg3)
= 9/8
⑵由登录(^ M)(孝宽橘B ^ N)=(N / M)巧团对数B
原来的公式=(巧猛LOG2 2 3 + LOG2 3)(log3中2 + log3中2)
= [ (1/2)LOG2 3 +(1/3)LOG2 3] [log3中2 +(1/2)log3中2]
= [(5/6)LOG2 3] [(3/2)log3中2
= 5/4
基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)
4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函团仿数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)
推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导孙团 完 )
公式三:
log(a)(b)=1/log(b)(a)
证明如下:
由则或橘换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
1、负数和或孙零没有埋粗对数;
2、a>0且a≠1,N>0;
3、loga1=0, logaa=1, alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
1)弯团镇log(a)(x)+log(a)(y)=log(a)(xy);
2)log(a)(x)-log(a)(y)=log(a)(x/y)
3)log(a^m)(x^n)=(n/m)log(a)(x)
4)logaMn=nlogaM (n∈R).
换底公式
log(a)(x)=log(b)(x)/log(b)(a)
=lg(x)/lg(a)=ln(x)/ln(a)
以上就是高一数学对数的全部内容,1、负数和零没有对数;2、a>0且a≠1,N>0;3、loga1=0, logaa=1, alogaN=N, logaab=b.特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN。