初中数学知识点总结?(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.) (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。那么,初中数学知识点总结?一起来了解一下吧。
初中数学教学,注重培养学生正确的数学情操和几何思维能力。下面是我为大家整理的关于初中数学基础知识点归纳总结,希望对您有所帮助。欢迎大家阅读参考学习!
初中数学基础知识点归纳总结
1、定理1 关于中心对称的两个图形是全等的
2、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
3、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
5、等腰梯形的两条对角线相等
6、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
7、对角线相等的梯形是等腰梯形
8、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
10、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
11、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
12、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
13、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
14、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
15、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
16、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
17、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
18、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
19、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
20、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
21、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
22、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
23、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
24、判定定理3 三边对应成比例,两三角形相似(SSS)
25、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
26、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
27、性质定理2 相似三角形周长的比等于相似比
28、性质定理3 相似三角形面积的比等于相似比的平方
29、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
30、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
31、圆是定点的距离等于定长的点的集合
32、圆的内部可以看作是圆心的距离小于半径的点的集合
33、圆的外部可以看作是圆心的距离大于半径的点的集合
34、同圆或等圆的半径相等
35、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
37、到已知角的两边距离相等的点的轨迹,是这个角的平分线
38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
39、定理 不在同一直线上的三点确定一个圆。
很多人不知道怎么才能学好初中数学,想知道提高数学成绩的方法有哪些,其实还要掌握了复习方法,就能学好数学,下面我给大家分享一些初中数学知识点总结,希望能够帮助大家,欢迎阅读!
初中数学知识点总结
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
重点知识:
初中数学第一课,认识正数与负数!新初一的来~
2.相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
初中数学知识点总结:
知识点1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
数学已成为许多国家及地区的教育范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了初中数学知识点总结归纳,供大家阅读参考。
初中数学知识点总结归纳
一: 数轴
11 有向直线
在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相
规定了正方向的直线,叫做有向直线,读作有向直线l
12 数轴
我们把数轴上任意一点所对应的实数称为点的坐标
对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化
数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值
二:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
以上就是初中数学知识点总结的全部内容,36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 37、到已知角的两边距离相等的点的轨迹,是这个角的平分线 38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 39、。