当前位置: 首页 > 我要自学 > 高中 > 高考

2017高考数学a卷答案,2017年全国高考数学一卷及答案

  • 高考
  • 2023-07-08

2017高考数学a卷答案?【答案】:A 《普通高中数学课程标准(2017年版2020年修订)》中在解释“数学抽象”这一核心素养时指出,数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。那么,2017高考数学a卷答案?一起来了解一下吧。

2018江苏高考数学答案

一、选择题

1.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()

A.|FP1|+|FP2|=|FP3|

B.|FP1|2+|FP2|2=|FP3|2

C.2|FP2|=|FP1|+|FP3|

D.|FP2|2=|FP1|·|FP3|

答案:C解题思路:抛物线的准线方程为x=-,由定义得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,则|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故选C.

2.与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为()

A.4B.2C.2D.

答案:C命题立意:本题考查直线与抛物线及圆的位置关系的应用,难度中等.

解题思路:设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0,因为直线与抛物线相切,故Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2),因此过A,B两点最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2.

3.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()

A.y2=9x B.y2=6x

C.y2=3x D.y2=x

答案:C命题立意:本题考查抛物线定义的应用及抛物线方程的求解,难度中等.

解题思路:如图,分别过点A,B作抛物线准线的垂线,垂足分别为E,D,由抛物线定义可知|AE|=|AF|=3,|BC|=2|BF|=2|BD|,在RtBDC中,可知BCD=30°,故在RtACE中,可得|AC|=2|AE|=6,故|CF|=3,则GF即为ACE的中位线,故|GF|=p==,因此抛物线方程为y2=2px=3x.

4.焦点在x轴上的双曲线C的左焦点为F,右顶点为A,若线段FA的中垂线与双曲线C有公共点,则双曲线C的离心率的取值范围是()

A.(1,3) B.(1,3]

C.(3,+∞) D.[3,+∞)

答案:D命题立意:本题主要考查双曲线的离心率问题,考查考生的化归与转化能力.

解题思路:设AF的中点C(xC,0),由题意xC≤-a,即≤-a,解得e=≥3,故选D.

5.过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当AOB的面积取值时,直线l的搭肆斜率等于()

A. B.- C.± D.-

答案:B命题透析:本题考查直线与圆的位置关系以及数形结合的数学思想.

思路点拨:由y=,得x2+y2=1(y≥0),即该曲线表示圆心在原点,半径为1的上半圆,如图所示.

故SAOB=|OA||OB|·sin AOB=sin AOB,所以当sin AOB=1,即OAOB时,SAOB取得值,此时O到直线l的距离d=|OA|sin 45°=.设此时直线l的方程为y=k(x-),即kx-y-k=0,则有=,解得k=±,由图可知直线l的倾斜角为钝角,故k=-.

6.点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“正点”,那么下列结论中正知渗轿确的是()

A.直线l上的所有点都是“正点”

B.直线l上仅有有限个点是“正点”

C.直线l上的所有点都不是“正点”

喊或D.直线l上有无穷多个点(点不是所有的点)是“正点”

答案:A解题思路:本题考查直线与抛物线的定义.设A(m,n),P(x,x-1),则B(2m-x,2n-x+1), A,B在y=x2上, n=m2,2n-x+1=(2m-x)2,消去n,整理得关于x的方程x2-(4m-1)x+2m2-1=0, Δ=8m2-8m+5>0恒成立, 方程恒有实数解.

二、填空题

7.设A,B为双曲线-=1(b>a>0)上两点,O为坐标原点.若OAOB,则AOB面积的最小值为________.

答案:解题思路:设直线OA的方程为y=kx,则直线OB的方程为y=-x,则点A(x1,y1)满足故x=,y=,

|OA|2=x+y=;

同理|OB|2=.

故|OA|2·|OB|2=·=.

=≤(当且仅当k=±1时,取等号), |OA|2·|OB|2≥,

又b>a>0,

故SAOB=|OA|·|OB|的最小值为.

8.已知直线y=x与双曲线-=1交于A,B两点,P为双曲线上不同于A,B的点,当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=________.

答案:解题思路:设点A(x1,y1),B(x2,y2),P(x0,y0),则由得y2=,y1+y2=0,y1y2=-,

x1+x2=0,x1x2=-4×.

由kPA·kPB=·====知kPA·kPB为定值.

9.设平面区域D是由双曲线y2-=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)D,则目标函数z=x+y的值为______.

答案:

3解题思路:本题考查双曲线、抛物线的性质以及线性规划.双曲线y2-=1的两条渐近线为y=±x,抛物线y2=-8x的准线为x=2,当直线y=-x+z过点A(2,1)时,zmax=3.

三、解答题

10.已知抛物线y2=4x,过点M(0,2)的直线与抛物线交于A,B两点,且直线与x轴交于点C.

(1)求证:|MA|,|MC|,|MB|成等比数列;

(2)设=α,=β,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.

解析:(1)证明:设直线的方程为:y=kx+2(k≠0),

联立方程可得得

k2x2+(4k-4)x+4=0.

设A(x1,y1),B(x2,y2),C,

则x1+x2=-,x1x2=,

|MA|·|MB|=|x1-0|·|x2-0|=,

而|MC|2=2=,

|MC|2=|MA|·|MB|≠0,

即|MA|,|MC|,|MB|成等比数列.

(2)由=α,=β,得

(x1,y1-2)=α,

(x2,y2-2)=β,

即得:α=,β=,

则α+β=,

由(1)中代入得α+β=-1,

故α+β为定值且定值为-1.

11.如图,在平面直角坐标系xOy中,设点F(0,p)(p>0),直线l:y=-p,点P在直线l上移动,R是线段PF与x轴的交点,过R,P分别作直线l1,l2,使l1PF,l2l,l1∩l2=Q.

(1)求动点Q的轨迹C的方程;

(2)在直线l上任取一点M作曲线C的两条切线,设切点为A,B,求证:直线AB恒过一定点;

(3)对(2)求证:当直线MA,MF,MB的斜率存在时,直线MA,MF,MB的斜率的倒数成等差数列.

解题思路:本题考查轨迹方程的求法及直线与抛物线的位置关系.(1)利用抛物线的定义即可求出抛物线的标准方程;(2)利用导数及方程根的思想得出两切点的直线方程,进一步求出直线恒过的定点;(3)分别利用坐标表示三条直线的斜率,从而化简证明即可.

解析:(1)依题意知,点R是线段PF的中点,且RQ⊥FP,

RQ是线段FP的垂直平分线. |QP|=|QF|.故动点Q的轨迹C是以F为焦点,l为准线的抛物线,其方程为:x2=4py(p>0).

(2)设M(m,-p),两切点为A(x1,y1),B(x2,y2).

由x2=4py得y=x2,求导得y′=x.

两条切线方程为y-y1=x1(x-x1),

y-y2=x2(x-x2),

对于方程,代入点M(m,-p)得,

-p-y1=x1(m-x1),又y1=x,

-p-x=x1(m-x1),

整理得x-2mx1-4p2=0.

同理对方程有x-2mx2-4p2=0,

即x1,x2为方程x2-2mx-4p2=0的两根.

x1+x2=2m,x1x2=-4p2.

设直线AB的斜率为k,k===(x1+x2),

所以直线的方程为y-=(x1+x2)(x-x1),展开得:

y=(x1+x2)x-,

将代入得:y=x+p.

直线恒过定点(0,p).

2017年高考数学全国三卷

楼主文科生吧?那是因为文竖枝科生学的数学选修书内容在颤梁数学高考的前160分中也有考察没记错的话文理都要学导数、圆锥曲线等内容,文科生学选修1系列,理余洞敏科生学选修2系列,不过这两个的内容基本上是一样的。而理科生附加的40分考的则是选修4系列,文科生是不用选修的。

2017年高考数学全国卷2理科

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

20.(12分)

已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点烂启且与C相交于A,拿世B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae²^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选消历肢考题:共10分。

2017高考数学试卷全国一卷

高中数学合集

1znmI8mJTas01m1m03zCRfQ

?pwd=1234

1234

简介:高中肢游数学优质资料,包括:试题试卷、课羡返件、教兄饥饥材、、各大名师网校合集。

2017北京高考数学

2017年江苏高考数学第14题以及答案如下:

首先来看题目如下:

其次看分析以及涉及到的内容:

本题涉及到周期函数、区间、分段函数、集合以及对数函数和零点的相关知识点,难度比较大,需要对这几个知识点进行充分的理解才能够对题目进行解答,还有对函数图像的理解能力也有一定的要求,

最后看本题的解析答案:

点评:本题考查的知识点是根的存在性及根的简蚂个数判断,函数拦铅埋的图象和性质,转化思想,对学生每一个知识点的掌控都考的很充分,对图形的理解、零点个数的转换与方程之间的关系都需要用区间进行分析得出相关的结论,难度中激旅档以上.

以上就是2017高考数学a卷答案的全部内容,1.已知集合,则A.B.C.D.2.如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点。

猜你喜欢