初二数学难题?解:(1)做法:做A沿直线0M的对应点A1 做A沿直线0N的对应点A2 连接A1 A2,A1与OM的交点是B,A2与ON的交点是C。解析:此时的△ABC中的AB,AC等于A A1,A A2。所以△ABC的周长最小。理由:两点之间线段最短。那么,初二数学难题?一起来了解一下吧。
1.三角形ABC中,AB=AC,它的一个外角为80度,底角平分线CD长为(20/3)*根号3,求腰上的高.
解:过C作CE⊥BA交BA的延长线于E,
∵△ABC一个外角为80度,AB=AC
∴∠BAC=100°
又CD平分∠ACB
∴∠ADC=60°
在Rt△DCE中,CE=(根号3)/2倍CD
∴CE=(20/3)*根号3×(根号3)/2
=10
即腰上的高为10
2.在正方形ABCD中,AD=8,点E为CD(不包括端点)的动点,AE的中垂线FE分别交AD,AE,BC于F,H,K,交AB延长线于点G.
1,设DE=m,FH/HK=t用含m的代数式表示t
2,当t=1/3时,求BG的长
解:
1.过H作MN平行于AB交AD于M,BC于N
∵H为AE的中点,∴HM=1/2DE=1/2m
且易证△HMF∽△HNK
∴MH/HN=FH/HK
即(1/2*m)/(8-1/2*m)=t
∴t=m/(16-m)
3.三角形ABC是等边三角形,D是BC边上的任意一点,CE为角ACB的外角平分线,角ADE等于60度,求证AD=DE
证:作DF⊥AC于F,DG⊥EC交其延长线于G
∵∠DCA=∠DCG=60°
∴DF=DG(角平分线的性质)
又易证∠DAF=∠DEG
∴△ADF≌△EDG(AAS)
∴AD=DE
4.已知正方形ABCD,过B点做AC的平行线BE,使AE=AC,AE交BC于点F,
求证:CE=CF
证:连接BD交AC于O,过E作EH⊥AC于H,
∵BE‖AC,
∴EH=BO=1/2BD
又BD=AC,AE=AC
∴EH=1/2AE
∴∠EAH=30°(在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半)
由AE=AC,∴∠ACE=∠AEC=75°
又∠ACB=45°
∴∠ECF=75°-45°=30°
又∠CFE=180°-∠ECF-∠ACE=180°-75°-30°=75°
∴∠CFE=∠AEC
∴CE=CF
5.请先画图:一个梯形,上面字母是A,B下面是D,C按左到右顺序
E为AD中点,注意:AD是腰\,别画错图
题目:(1)角A=90度(2)AB+CD=BE(3)三角形BEC的面积=1/2梯形ABCD的面积(4)BE平分角ABC(5)角BEC=90
请上面五个论断中选择相关的两个论断,将其中一个作为条件,另一个作结论构造一个正确的命题并证明
已知:梯形ABCD中,E为AD中点,角A=90度
求证:三角形BEC的面积=1/2梯形ABCD的面积
证:延长BE交CD的延长线于F
∵E为AD中点,∴AE=DE,
又∠A=∠CDA=90°,∠AEB=∠DEF
∴△ABE≌△DFE
∴AB=FD
∴梯形ABCD的面积=(AB+DC)×AD/2=(FD+DC)×AD/2=△BFC的面积
而S△EFC=[(FD+DC)×AD/2]/2=S△BFC/2
∴S△EFC=S△BEC即S△BEC=△BFC的面积/2=梯形ABCD的面积/2
6..在梯形ABCD中,AD平行BC,AD=3,AB=4,BC=5,那么腰CD的取值范围是?
7..等腰梯形的高为6CM,且对角线互相垂直,则这个梯形的面积是?
8..等腰梯形ABCD中,AD平行BC,角B=60度,AD=AB=6CM,则等腰梯形ABCD的周长是?
解:
6..过D作DE‖AB交BC于E,ABED为平行四边形,则CE=CB-BE=5-3=2
DE=4,∴2<CD<6
7..过D作DF‖AC交BC的延长线于F,则△BDF为等腰Rt△,
且S△BDF=S梯形ABCD=36cm²
8..过A作AH⊥BC于H,则BH=1/2AB,所以BH=3,BC=12,
∴等腰梯形ABCD的周长是30cm
9.已知:Rt△ABC中,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠FDC
证:过C作CH‖AB交AF的延长线于H,由题设知∠DAE+∠ADE=∠ADE+∠ABD
=90°,∴∠DAE=∠ABD
在△ACH和△BAD中,∠DAE=∠ABD,∠HCA=∠DAE=90°,AB=AC
∴△ACH≌△BAD,∴∠ADB=∠AHC
且AD=CH,又AD=DC,∴DC=CH,易证△CDF≌△CHF
∴∠AHC=∠FDC
∴∠ADB=∠FDC
10.在三角形ABC中,角A等于90度,AB=AC,D为BC上任意点,作DE垂直AB于E,DF垂直AC于F,取BC中点M,连接EM,FM,EF,问,三角形EFM是什么三角形?
三角形EFM是等腰直角三角形.
证:连接MA,∵BC中点为M,∠A=90°,∴AM=(1/2)*BC
又四边形AEDF为矩形,∴AE=FD,易证FD=FC
∴FC=AE,∵AB=AC,∠C=∠MAE=45°
∴△AEM≌△CFM(SAS)
∴ME=MF,∠CMF=∠AME,又AM⊥BC,即∠CMF+∠FMA=90°
∴∠AME+FMA=∠CMF+FMA=90°
∴△EFM是等腰直角三角形
......
够了吧?
1.三角形ABC中,AB=AC,它的一个外角为80度,底角平分线CD长为(20/3)*根号3,求腰上的高.
解:过C作CE⊥BA交BA的延长线于E,
∵△ABC一个外角为80度,AB=AC
∴∠BAC=100°
又CD平分∠ACB
∴∠ADC=60°
在Rt△DCE中,CE=(根号3)/2倍CD
∴CE=(20/3)*根号3×(根号3)/2
=10
即腰上的高为10
2.在正方形ABCD中,AD=8,点E为CD(不包括端点)的动点,AE的中垂线FE分别交AD,AE,BC于F,H,K,交AB延长线于点G.
1,设DE=m,FH/HK=t用含m的代数式表示t
2,当t=1/3时,求BG的长
解:
1.过H作MN平行于AB交AD于M,BC于N
∵H为AE的中点,∴HM=1/2DE=1/2m
且易证△HMF∽△HNK
∴MH/HN=FH/HK
即(1/2*m)/(8-1/2*m)=t
∴t=m/(16-m)
3.三角形ABC是等边三角形,D是BC边上的任意一点,CE为角ACB的外角平分线,角ADE等于60度,求证AD=DE
证:作DF⊥AC于F,DG⊥EC交其延长线于G
∵∠DCA=∠DCG=60°
∴DF=DG(角平分线的性质)
又易证∠DAF=∠DEG
∴△ADF≌△EDG(AAS)
∴AD=DE
4.已知正方形ABCD,过B点做AC的平行线BE,使AE=AC,AE交BC于点F,
求证:CE=CF
证:连接BD交AC于O,过E作EH⊥AC于H,
∵BE‖AC,
∴EH=BO=1/2BD
又BD=AC,AE=AC
∴EH=1/2AE
∴∠EAH=30°(在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半)
由AE=AC,∴∠ACE=∠AEC=75°
又∠ACB=45°
∴∠ECF=75°-45°=30°
又∠CFE=180°-∠ECF-∠ACE=180°-75°-30°=75°
∴∠CFE=∠AEC
∴CE=CF
5.请先画图:一个梯形,上面字母是A,B下面是D,C按左到右顺序
E为AD中点,注意:AD是腰\,别画错图
题目:(1)角A=90度(2)AB+CD=BE(3)三角形BEC的面积=1/2梯形ABCD的面积(4)BE平分角ABC(5)角BEC=90
请上面五个论断中选择相关的两个论断,将其中一个作为条件,另一个作结论构造一个正确的命题并证明
已知:梯形ABCD中,E为AD中点,角A=90度
求证:三角形BEC的面积=1/2梯形ABCD的面积
证:延长BE交CD的延长线于F
∵E为AD中点,∴AE=DE,
又∠A=∠CDA=90°,∠AEB=∠DEF
∴△ABE≌△DFE
∴AB=FD
∴梯形ABCD的面积=(AB+DC)×AD/2=(FD+DC)×AD/2=△BFC的面积
而S△EFC=[(FD+DC)×AD/2]/2=S△BFC/2
∴S△EFC=S△BEC即S△BEC=△BFC的面积/2=梯形ABCD的面积/2
6..在梯形ABCD中,AD平行BC,AD=3,AB=4,BC=5,那么腰CD的取值范围是?
7..等腰梯形的高为6CM,且对角线互相垂直,则这个梯形的面积是?
8..等腰梯形ABCD中,AD平行BC,角B=60度,AD=AB=6CM,则等腰梯形ABCD的周长是?
解:
6..过D作DE‖AB交BC于E,ABED为平行四边形,则CE=CB-BE=5-3=2
DE=4,∴2<CD<6
7..过D作DF‖AC交BC的延长线于F,则△BDF为等腰Rt△,
且S△BDF=S梯形ABCD=36cm²
8..过A作AH⊥BC于H,则BH=1/2AB,所以BH=3,BC=12,
∴等腰梯形ABCD的周长是30cm
9.已知:Rt△ABC中,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠FDC
证:过C作CH‖AB交AF的延长线于H,由题设知∠DAE+∠ADE=∠ADE+∠ABD
=90°,∴∠DAE=∠ABD
在△ACH和△BAD中,∠DAE=∠ABD,∠HCA=∠DAE=90°,AB=AC
∴△ACH≌△BAD,∴∠ADB=∠AHC
且AD=CH,又AD=DC,∴DC=CH,易证△CDF≌△CHF
∴∠AHC=∠FDC
∴∠ADB=∠FDC
10.在三角形ABC中,角A等于90度,AB=AC,D为BC上任意点,作DE垂直AB于E,DF垂直AC于F,取BC中点M,连接EM,FM,EF,问,三角形EFM是什么三角形?
三角形EFM是等腰直角三角形.
证:连接MA,∵BC中点为M,∠A=90°,∴AM=(1/2)*BC
又四边形AEDF为矩形,∴AE=FD,易证FD=FC
∴FC=AE,∵AB=AC,∠C=∠MAE=45°
∴△AEM≌△CFM(SAS)
∴ME=MF,∠CMF=∠AME,又AM⊥BC,即∠CMF+∠FMA=90°
∴∠AME+FMA=∠CMF+FMA=90°
∴△EFM是等腰直角三角形
......
够了吧?
解:
(1)做法:做A沿直线0M的对应点A1
做A沿直线0N的对应点A2
连接A1 A2,A1与OM的交点是B,A2与ON的交点是C。
解析:此时的△ABC中的AB,AC等于A A1,A A2。所以△ABC的周长最小。
理由:两点之间线段最短。
(2)做法:过B做直线L的垂线
交直线L于点C
连接AC
解析:既然使CA剪CB的绝对值最大,所以CB要做到最短。
理由:点到直线间最短的距离是它的垂线段
(3)做法:∵∠1等于∠2,AB>AC,
∴DB>DC
又∵∠PDC<∠PDB
∴BP>PC
∵得不等式:AB+BP>AC+CP
解不等式得:
(AB+BP>AC+CP)
(=AB-BP>AC-CP)
∴AB-AC>BP-CP
解析:因为∠1等于∠2,AB>AC,而只有DB>DC的时候AB>AC
所以DB>DC。然后,看图可知∠PDC<∠PDB。
所以说BP>PC。最后便把AB>AC和BP>PC结合
就得出了不等式组AB+BP>AC+CP,结不等式
得出:PB - PC<AB - AC.
因为AB=CD,所以AC=BD.因为。平行。,所以角EAB等于角FBD,同理角FDC等于角ECB.根据全等三角形(asa)所以AEC全等FBD.所以AE=BF
你好!!!
设经过t秒,
四边形AQPD成为等腰梯形,AQ-PD=(AB-CD)×2=4
3t-(24-t)=4
t=7秒
希望能够帮助你!!
以上就是初二数学难题的全部内容,1.三角形ABC中,AB=AC,它的一个外角为80度,底角平分线CD长为(20/3)*根号3,求腰上的高.解:过C作CE⊥BA交BA的延长线于E,∵△ABC一个外角为80度。