数学题八年级下册?(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由. 八年级数学参考答案 一、选择题(本大题共8小题,每小题3分,共24分) 题号12345678 答案DBDACCAD 二、那么,数学题八年级下册?一起来了解一下吧。
①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5) =-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b ⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51 ⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5 ⑨(3√6-√4)? =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3) =[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6 (1)5√12×√18 =5*2√3*3√2 =30√6; (2)-6√45×(-4√48) =6*3√5*4*4√3 =288√15; (3)√(12a)×√(3a) /4 =√(36a^2)/4 =6a/4 =3a/2. 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) 9. 9x^2(x-1)^2-3(x^2-x)-56 =9x^2(x-1)^2-3x(x-1)-56 =[3x(x-1)-8][3x(x-1)+7] =(3x^2-3x-8)(3x^2-3x+7) 有理数练习 练习一(B级) (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) 9. 9x^2(x-1)^2-3(x^2-x)-56 =9x^2(x-1)^2-3x(x-1)-56 =[3x(x-1)-8][3x(x-1)+7] =(3x^2-3x-8)(3x^2-3x+7) 1.125*3+125*5+25*3+25 2.9999*3+101*11*(101-92) 3.(23/4-3/4)*(3*6+2) 4. 3/7 × 49/9 - 4/3 5. 8/9 × 15/36 + 1/27 6. 12× 5/6 – 2/9 ×3 7. 8× 5/4 + 1/4 8. 6÷ 3/8 – 3/8 ÷6 9. 4/7 × 5/9 + 3/7 × 5/9 10. 5/2 -( 3/2 + 4/5 ) 11. 7/8 + ( 1/8 + 1/9 ) 12. 9 × 5/6 + 5/6 13. 3/4 × 8/9 - 1/3 14. 7 × 5/49 + 3/14 15. 6 ×( 1/2 + 2/3 ) 16. 8 × 4/5 + 8 × 11/5 17. 31 × 5/6 – 5/6 18. 9/7 - ( 2/7 – 10/21 ) 19. 5/9 × 18 – 14 × 2/7 20. 4/5 × 25/16 + 2/3 × 3/4 21. 14 × 8/7 – 5/6 × 12/15 22. 17/32 – 3/4 × 9/24 23. 3 × 2/9 + 1/3 24. 5/7 × 3/25 + 3/7 25. 3/14 ×× 2/3 + 1/6 26. 1/5 × 2/3 + 5/6 27. 9/22 + 1/11 ÷ 1/2 28. 5/3 × 11/5 + 4/3 29. 45 × 2/3 + 1/3 × 15 30. 7/19 + 12/19 × 5/6 31. 1/4 + 3/4 ÷ 2/3 32. 8/7 × 21/16 + 1/2 33. 101 × 1/5 – 1/5 × 21 34.50+160÷40 35.120-144÷18+35 36.347+45×2-4160÷52 37(58+37)÷(64-9×5) 38.95÷(64-45) 39.178-145÷5×6+42 40.812-700÷(9+31×11) 41.85+14×(14+208÷26) 43.120-36×4÷18+35 44.(58+37)÷(64-9×5) 45.(6.8-6.8×0.55)÷8.5 46.0.12× 4.8÷0.12×4.8 47.(3.2×1.5+2.5)÷1.6 48.6-1.6÷4= 5.38+7.85-5.37= 49.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 50.6.5×(4.8-1.2×4)= 51.5.8×(3.87-0.13)+4.2×3.74 52.32.52-(6+9.728÷3.2)×2.5 53.[(7.1-5.6)×0.9-1.15] ÷2.5 54.5.4÷[2.6×(3.7-2.9)+0.62] 55.12×6÷(12-7.2)-6 56.12×6÷7.2-6 57.0.68×1.9+0.32×1.9 58.58+370)÷(64-45) 59.420+580-64×21÷28 60.136+6×(65-345÷23) 15-10.75×0.4-5.7 62.18.1+(3-0.299÷0.23)×1 63.(6.8-6.8×0.55)÷8.5 64.0.12× 4.8÷0.12×4.8 65.(3.2×1.5+2.5)÷1.6 66.3.2×6+(1.5+2.5)÷1.6 67.0.68×1.9+0.32×1.9 68.10.15-10.75×0.4-5.7 69.5.8×(3.87-0.13)+4.2×3.74 70.32.52-(6+9.728÷3.2)×2.5 71.[(7.1-5.6)×0.9-1.15] ÷2.5 72.5.4÷[2.6×(3.7-2.9)+0.62] 73.12×6÷(12-7.2)-6 74.12×6÷7.2-6 75.33.02-(148.4-90.85)÷2.5 1) 76.(25%-695%-12%)*36 77./4*3/5+3/4*2/5 78.1-1/4+8/9/7/9 79.+1/6/3/24+2/21 80./15*3/5 81.3/4/9/10-1/6 82./3+1/2)/5/6-1/3]/1/7 83./5+3/5/2+3/4 84.(2-2/3/1/2)]*2/5 85.+5268.32-2569 86.3+456-52*8 87.5%+6325 88./2+1/3+1/4 2) 89+456-78 3) 5%+. 3/7 × 49/9 - 4/3 4) 9 × 15/36 + 1/27 5) 2× 5/6 – 2/9 ×3 6) 3× 5/4 + 1/4 7) 94÷ 3/8 – 3/8 ÷6 8) 95/7 × 5/9 + 3/7 × 5/9 9) 6/2 -( 3/2 + 4/5 ) 10) 8 + ( 1/8 + 1/9 ) 11) 8 × 5/6 + 5/6 12) 1/4 × 8/9 - 1/3 13) 10 × 5/49 + 3/14 14) 1.5 ×( 1/2 + 2/3 ) 15) 2/9 × 4/5 + 8 × 11/5 16) 3.1 × 5/6 – 5/6 17) 4/7 - ( 2/7 – 10/21 ) 18) 19 × 18 – 14 × 2/7 19) 5 × 25/16 + 2/3 × 3/4 20) 4 × 8/7 – 5/6 × 12/15 21) 7/32 – 3/4 × 9/24 22) 1、 2/3÷1/2-1/4×2/5 2、 2-6/13÷9/26-2/3 3、 2/9+1/2÷4/5+3/8 4、 10÷5/9+1/6×4 5、 1/2×2/5+9/10÷9/20 6、 5/9×3/10+2/7÷2/5 7、 1/2+1/4×4/5-1/8 8、 3/4×5/7×4/3-1/2 9、 23-8/9×1/27÷1/27 10、 8×5/6+2/5÷4 11、 1/2+3/4×5/12×4/5 12、 8/9×3/4-3/8÷3/4 13、 5/8÷5/4+3/23÷9/11 23) 1.2×2.5+0.8×2.5 24) 8.9×1.25-0.9×1.25 25) 12.5×7.4×0.8 26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5 0.35×1.6+0.35×3.4 0.25×8.6×4 6.72-3.28-1.72 0.45+6.37+4.55 5.4+6.9×3-(25-2.5)2×41846-620-380 4.8×46+4.8×54 0.8+0.8×2.5 1.25×3.6×8×2.5-12.5×2.4 28×12.5-12.5×20 23.65-(3.07+3.65) (4+0.4×0.25)8×7×1.25 1.65×99+1.65 27.85-(7.85+3.4) 48×1.25+50×1.25×0.2×8 7.8×9.9+0.78 (1010+309+4+681+6)×12 3×9146×782×6×854 5.15×7/8+6.1-0.60625 1. 3/7 × 49/9 - 4/3 2. 8/9 × 15/36 + 1/27 3. 12× 5/6 – 2/9 ×3 4. 8× 5/4 + 1/4 5. 6÷ 3/8 – 3/8 ÷6 6. 4/7 × 5/9 + 3/7 × 5/9 7. 5/2 -( 3/2 + 4/5 ) 8. 7/8 + ( 1/8 + 1/9 ) 9. 9 × 5/6 + 5/6 10. 3/4 × 8/9 - 1/3 11. 7 × 5/49 + 3/14 12. 6 ×( 1/2 + 2/3 ) 13. 8 × 4/5 + 8 × 11/5 14. 31 × 5/6 – 5/6 15. 9/7 - ( 2/7 – 10/21 ) 16. 5/9 × 18 – 14 × 2/7 17. 4/5 × 25/16 + 2/3 × 3/4 18. 14 × 8/7 – 5/6 × 12/15 19. 17/32 – 3/4 × 9/24 20. 3 × 2/9 + 1/3 21. 5/7 × 3/25 + 3/7 22. 3/14 ×× 2/3 + 1/6 23. 1/5 × 2/3 + 5/6 24. 9/22 + 1/11 ÷ 1/2 25. 5/3 × 11/5 + 4/3 26. 45 × 2/3 + 1/3 × 15 27. 7/19 + 12/19 × 5/6 28. 1/4 + 3/4 ÷ 2/3 29. 8/7 × 21/16 + 1/2 30. 101 × 1/5 – 1/5 × 21 31.50+160÷40 (58+370)÷(64-45) 32.120-144÷18+35 33.347+45×2-4160÷52 34(58+37)÷(64-9×5) 35.95÷(64-45) 36.178-145÷5×6+42 420+580-64×21÷28 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 38.85+14×(14+208÷26) 39.(284+16)×(512-8208÷18) 40.120-36×4÷18+35 41.(58+37)÷(64-9×5) 42.(6.8-6.8×0.55)÷8.5 43.0.12× 4.8÷0.12×4.8 44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6 45.6-1.6÷4= 5.38+7.85-5.37= 46.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9 48.10.15-10.75×0.4-5.7 49.5.8×(3.87-0.13)+4.2×3.74 50.32.52-(6+9.728÷3.2)×2.5 51.[(7.1-5.6)×0.9-1.15] ÷2.5 52.5.4÷[2.6×(3.7-2.9)+0.62] 53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6 102×4.5 7.8×6.9+2.2×6.9 5.6×0.25 8×(20-1.25) 1)127+352+73+44 (2)89+276+135+33 (1)25+71+75+29 +88 (2)243+89+111+57 9405-2940÷28×21 920-1680÷40÷7 690+47×52-398 148+3328÷64-75 360×24÷32+730 2100-94+48×54 51+(2304-2042)×23 4215+(4361-716)÷81 (247+18)×27÷25 36-720÷(360÷18) 1080÷(63-54)×80 (528+912)×5-6178 8528÷41×38-904 264+318-8280÷69 (174+209)×26- 9000 814-(278+322)÷15 1406+735×9÷45 3168-7828÷38+504 796-5040÷(630÷7) 285+(3000-372)÷36 1+5/6-19/12 3x(-9)+7x(-9 (-54)x1/6x(-1/3) 1.18.1+(3-0.299÷0.23)×1 2.(6.8-6.8×0.55)÷8.5 3.0.12× 4.8÷0.12×4.8 4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6 5.6-1.6÷4= 5.38+7.85-5.37= 6.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9 8.10.15-10.75×0.4-5.7 9.5.8×(3.87-0.13)+4.2×3.74 10.32.52-(6+9.728÷3.2)×2.5 11.[(7.1-5.6)×0.9-1.15] ÷2.5 12.5.4÷[2.6×(3.7-2.9)+0.62] 13.12×6÷(12-7.2)-6 14.12×6÷7.2-6 15.33.02-(148.4-90.85)÷2.5 7×(5/21+9/714) a^3-2b^3+ab(2a-b) =a^3+2a^2b-2b^3-ab^2 =a^2(a+2b)-b^2(2b+a) =(a+2b)(a^2-b^2) =(a+2b)(a+b)(a-b) 2. (x^2+y^2)^2-4y(x^2+y^2)+4y^2 =(x^2+y^2-2y)^2 3. (x^2+2x)^2+3(x^2+2x)+x^2+2x+3 =(x^2+2x)^2+4(x^2+2x)+3 =(x^2+2x+3)(x^2+2x+1) =(x^2+2x+3)(x+1)^2 4. (a+1)(a+2)+(2a+1)(a-2)-12 =a^2+3a+2+2a^2-3a-2-12 =3a^2-12 =3(a+2)(a-2) 5. x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+yz)^2 =z^2(x+y)^2 6. 3(a+2)^2+28(a+2)-20 =[3(a+2)-2][(a+2)+10] =(3a+4)(a+12) 7. (a+b)^2-(b-c)^2+a^2-c^2 =(a+b)^2-c^2+a^2-(b-c)^2 =(a+b+c)(a+b-c)+(a+b-c)(a-b+c) =(a+b-c)(a+b+c+a-b+c) =2(a+b-c)(a+c) 8. x(x+1)(x^2+x-1)-2 =(x^2+x)(x^2+x-1)-2 =(x^2+x)^2-(x^2+x)-2 =(x^2+x-2)(x^2+x+1) =(x+2)(x-1)(x^2+x+1) 写完一遍后再别这些题写一遍,以此类推,老师们看作业都是一看而过不会一个一个批的。
一、选择题(每小题3分,共30分)
1、若 有意义,则m能取的最小整数值是( )
A.m=0 B.m=1 C.m=2 D.m=3
2、在菱形ABCD中,E是AB延长线上的点,若∠A=60°,则∠CBE的大小为( )
A、120° B、60° C、45° D、30°
3、已知直线y=-6x,则下列各点中一定在该直线上的是( )
A、(3,18) B、(-18,-3) C、(18,3) D、(3,-18)
4、一位卖“运动鞋”的经销商到一所学校对9位学生的鞋号进行了抽样调查。经销商最感兴趣的是这组数据中的( )
A、众数 B、中位数 C、平均数 D、方差
5、能判定一个四边形是平行四边形的是( )
A、一组对边平行,另一组对边相等 B、一组对边平行,一组对角相等
C、一组对边平行,一组邻角互补 D、一组对边相等,一组邻角相等
6、已知A(x1,y1)、B(x2,y2)是正比例函数y=kx(kx2,则下列结论正确的是( )
A、y1y2 D、-y1<-y2
7、若 ,则( )
A.b>3 B.b<3 C.b≥3 D.b≤3
8、一次函数y=kx+2与正比例函数y=kx的图像大致是( )
9、一个圆桶底面直径为10 cm,高24 cm,则桶内所能容下的最长木棒为( )
A、20 cm B、124 cm C、26 cm D、30 cm
10、若a、b、c表示ΔABC的三边,且满足 =0,则ΔABC是( )
A、等腰三角形 B、直角三角形 C、等腰直角三角形 D、等边三角形
二、填空题(每小题3分,共24分)
11、已知平行四边形ABCD,请补充一个条件,使它成为矩形ABCD。
(1)66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
定义
加法:把两个数合并成一个数的运算。
减法:在已知两个加数的和与其中的一个加数,求另一个加数的运算。
乘法:求两个数乘积的运算。
一个数乘整数,是求几个相同加数和的简便运算。
除法:已知两个因数的积与其中的一个因数,求另一个因数的运算。
以上内容参考:-四则运算
很多学生到了 八年级 数学成绩开始下降,其实很大一部分原因是没有掌握好课本的基础知识。下面是我整理的八年级下册数学测试卷及答案解析,欢迎阅读分享,希望对大家有所帮助。
八年级下册数学测试卷及答案
一、选择题:
1.下列各式从左到右,是因式分解的是()
A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1
C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2
【考点】因式分解的意义.
【分析】根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用排除法求解.
【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;
B、结果不是积的形式,故本选项错误;
C、不是对多项式变形,故本选项错误;
D、运用完全平方公式分解x2﹣4x+4=(x﹣2)2,正确.
故选D.
【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.
2.下列四个图形中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,也是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选B.
【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3.下列多项式中不能用平方差公式分解的是()
A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2
【考点】因式分解﹣运用公式法.
【分析】能用平方差公式分解的式子的特点是:两项都是平方项,符号相反.
【解答】解:A、符合平方差公式的特点;
B、两平方项的符号相同,不符和平方差公式结构特点;
C、符合平方差公式的特点;
D、符合平方差公式的特点.
故选B.
【点评】本题考查能用平方差公式分解的式子的特点,两平方项的符号相反是运用平方差公式的前提.
4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()
A.x>0B.x<0C.x<2D.x>2
【考点】一次函数与一元一次不等式.
【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.
【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,
所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.
故选C.
【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.
5.使分式有意义的x的值为()
A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2
【考点】分式有意义的条件.
【分析】根据分式有意义,分母不等于0列不等式求解即可.
【解答】解:由题意得,(x﹣1)(x﹣2)≠0,
解得x≠1且x≠2.
故选C.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分子为零且分母不为零.
6.下列是最简分式的是()
A.B.C.D.
【考点】最简分式.
【分析】先将选项中能化简的式子进行化简,不能化简的即为最简分式,本题得以解决.
【解答】解:,无法化简,,,
故选B.
【点评】本题考查最简分式,解题的关键是明确最简分式的定义.
7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()
A.6B.7C.8D.9
【考点】等腰三角形的判定.
【专题】分类讨论.
【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【解答】解:如上图:分情况讨论.
①AB为等腰△ABC底边时,符合条件的C点有4个;
②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
8.若不等式组的解集是x<2,则a的取值范围是()
A.a<2B.a≤2C.a≥2D.无法确定
【考点】解一元一次不等式组.
【专题】计算题.
【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.
【解答】解:由(1)得:x<2
因为不等式组的解集是x<2
∴a≥2
故选:C.
【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
9.下列式子:(1);(2);(3);(4),其中正确的有()
A.1个B.2个C.3个D.4个
【考点】分式的基本性质.
【分析】根据分式的基本性质作答.
【解答】解:(1),错误;
(2),正确;
(3)∵b与a的大小关系不确定,∴的值不确定,错误;
(4),正确.
故选B.
【点评】在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.
10.某煤矿原计划x天生存120t煤,由于采用新的技术,每天增加生存3t,因此提前2天完成,列出的方程为()
A.==﹣3B.﹣3
C.﹣3D.=﹣3
【考点】由实际问题抽象出分式方程.
【分析】设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,等量关系为:原计划工作效率=实际工作效率﹣3,依此可列出方程.
【解答】解:设原计划x天生存120t煤,则实际(x﹣2)天生存120t煤,
根据题意得,=﹣3.
故选D.
【点评】本题考查由实际问题抽象出分式方程,关键设出天数,以工作效率作为等量关系列方程.
二、填空题:
11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).
【考点】提公因式法与公式法的综合运用.
【分析】把(x﹣y)看作一个整体并提取,然后再利用平方差公式继续分解因式即可.
【解答】解:x2(x﹣y)+(y﹣x)
=x2(x﹣y)﹣(x﹣y)
=(x﹣y)(x2﹣1)
=(x﹣y)(x+1)(x﹣1).
故答案为:(x﹣y)(x+1)(x﹣1).
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.当x=﹣2时,分式无意义.若分式的值为0,则a=﹣2.
【考点】分式的值为零的条件;分式有意义的条件.
【分析】根据分母为零,分式无意义;分母不为零,分式有意义,分子为零分母不为零分式的值为零,可得答案.
【解答】解:∵分式无意义,
∴x+2=0,
解得x=﹣2.
∵分式的值为0,
∴,
解得a=﹣2.
故答案为:=﹣2,﹣2.
【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义?分母为零;分式有意义?分母不为零;分式值为零?分子为零且分母不为零.
13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6.
【考点】线段垂直平分线的性质.
【专题】计算题;压轴题.
【分析】运用线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表示出线段之间的数量关系,联立关系式后求解.
【解答】解:∵DE是BC边上的垂直平分线,
∴BE=CE.
∵△EDC的周长为24,
∴ED+DC+EC=24,①
∵△ABC与四边形AEDC的周长之差为12,
∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,
∴BE+BD﹣DE=12,②
∵BE=CE,BD=DC,
∴①﹣②得,DE=6.
故答案为:6.
【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
14.若4a4﹣ka2b+25b2是一个完全平方式,则k=±20.
【考点】完全平方式.
【分析】根据4a4﹣ka2b+25b2是一个完全平方式,利用此式首末两项是2a2和5b这两个数的平方,那么中间一项为加上或减去2a2和5b积的2倍,进而求出k的值即可.
【解答】解:∵4a4﹣ka2b+25b2是一个完全平方式,
∴4a4﹣ka2b+25b2=(2a2±5b)2,
=4a4±20a2b+25b2.
∴k=±20,
故答案为:±20.
【点评】此题主要考查的是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.
【考点】扇形面积的计算.
【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.
【解答】解:连接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,点O为AB的中点,
∴OC=AB=1,四边形OMCN是正方形,OM=.
则扇形FOE的面积是:=.
∵OA=OB,∠AOB=90°,点D为AB的中点,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
则在△OMG和△ONH中,
,
∴△OMG≌△ONH(AAS),
∴S四边形OGCH=S四边形OMCN=()2=.
则阴影部分的面积是:﹣.
故答案为:﹣.
【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.
三、解答题
16.(21分)(2016春?成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3;
(2)解方程:=+;
(3)先化简,再求值(﹣x+1)÷,其中;
(4)解不等式组,把解集在数轴上表示出来,且求出其整数解.
【考点】分式的化简求值;提公因式法与公式法的综合运用;解分式方程;在数轴上表示不等式的解集;解一元一次不等式组;一元一次不等式组的整数解.
【分析】(1)先提公因式,然后根据完全平方公式解答;
(2)去分母后将原方程转化为整式方程解答.
(3)将括号内统分,然后进行因式分解,化简即可;
(4)分别求出不等式的解集,找到公共部分,在数轴上表示即可.
【解答】解:(1)原式=2y(x2﹣2xy+y2)
=2y(x﹣y)2;
(2)去分母,得(x﹣2)2=(x+2)2+16
去括号,得x2﹣4x+4=x2+4x+4+16
移项合并同类项,得﹣8x=16
系数化为1,得x=﹣2,
当x=﹣2时,x+2=0,则x=﹣2是方程的增根.
故方程无解;
(3)原式=[﹣]?
=?
=?
=﹣,
当时,原式=﹣=﹣=﹣;
(4)
由①得x<2,
由②得x≥﹣1,
不等式组的解集为﹣1≤x<2,
在数轴上表示为
.
【点评】本题考查的是分式的化简求值、因式分解、解一元一次不等式组、在数轴上表示不等式组的解集,考查内容较多,要细心解答.
17.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1以点O为旋转中心、顺时针方向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.
【考点】作图﹣旋转变换;作图﹣平移变换.
【分析】(1)分别作出点A、B、C沿y轴正方向平移3个单位得到对应点,顺次连接即可得;
(2)分别作出点A、B、C以点O为旋转中心、顺时针方向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可.
【解答】解:(1)如图,△A1B1C1即为所求作三角形,点B1坐标为(﹣2,﹣1);
(2)如图,△A2B2C2即为所求作三角形,
∵OC==,
∴==π.
【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式.
18.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
【考点】分式方程的应用.
【专题】应用题.
【分析】根据题意,设科普和文学书的价格分别为x和y元,则根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列方程组即可求解.
【解答】解:设科普和文学书的价格分别为x和y元,
则有:,
解得:x=7.5,y=5,
即这种科普和文学书的价格各是7.5元和5元.
【点评】本题考查分式方程的应用,同时考查学生理解题意的能力,关键是根据“科普书的价格比文学书的价格高出一半,买的文学书比科普书多一本“列出方程组.
19.已知关于x的方程=3的解是正数,求m的取值范围.
【考点】解分式方程;解一元一次不等式.
【专题】计算题.
【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
【解答】解:原方程整理得:2x+m=3x﹣6,
解得:x=m+6.
因为x>0,所以m+6>0,即m>﹣6.①
又因为原式是分式方程,所以x≠2,即m+6≠2,所以m≠﹣4.②
由①②可得,m的取值范围为m>﹣6且m≠﹣4.
【点评】本题主要考查了分式方程的解法及其增根产生的原因.解答本题时,易漏掉m≠4,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.
20.(12分)(2016?河南模拟)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
【考点】四边形综合题.
【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.
【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
【类比引申】∠BAD=2∠EAF.
理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
故答案是:∠BAD=2∠EAF.
【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H.
∵∠BAD=150°,∠DAE=90°,
∴∠BAE=60°.
又∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=80米.
根据旋转的性质得到:∠ADG=∠B=60°,
又∵∠ADF=120°,
∴∠GDF=180°,即点G在CD的延长线上.
易得,△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40
故∠HAF=45°,
∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°
从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°
又∵∠BAD=150°=2×75°=2∠EAF
∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.
【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
八年级数学怎么快速提高
一、做好数学课前预习工作
很多学生在数学课前预习的习惯,这样会造成课上学的不太懂、课后翻书找不到的这样的情况。
以下是为您推荐的八年级下册期末数学试题(附答案),希望本篇文章对您学习有所帮助。
八年级下册期末数学试题(附答案)
一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内.
1.不等式的解集是()
A BCD
2.如果把分式中的x和y都扩大2倍,那么分式的值()
A扩大2倍B不变C缩小2倍D扩大4倍
3.若反比例函数图像经过点,则此函数图像也经过的点是()
ABCD
4.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为()
A8,3 B8,6 C4,3 D4,6
5.下列命题中的假命题是()
A互余两角的和是90°B全等三角形的面积相等
C相等的角是对顶角D两直线平行,同旁内角互补
6.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,
则钥匙藏在黑色瓷砖下面的概率是()
ABCD
7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是()
ABCD
8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,
AD=4,AB=5,BC=6,点P是AB上一个动点,
当PC+PD的和最小时,PB的长为()
A1B2C2.5D3
二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上.
9、函数y=中,自变量的取值范围是.
10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距千米.
11.如图1,,,垂足为.若,则度.
12.如图2,是的边上一点,请你添加一个条件:,使.
13.写出命题“平行四边形的对角线互相平分”的逆命题:_______________
__________________________________________________________.
14.已知、、三条线段,其中,若线段是线段、的比例中项,
则=.
15.若不等式组的解集是,则.
16.如果分式方程无解,则m=.
17.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为.
18.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为.
三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤.
19.(8分)解不等式组,并把解集在数轴上表示出来.
20.(8分)解方程:
21.(8分)先化简,再求值:,其中.
22.(8分)如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,-1)、C(2,1).
(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′(,),C′(,);
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(,).
23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.
能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.
供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=上的`概率.
25.(10分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式;
(2)若一次函数的图象与x轴相交于点C,求∠ACO的度数;
(3)结合图象直接写出:当>>0时,x的取值范围.
26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=,CE=,CA=(点A、E、C在同一直线上).
已知小明的身高EF是,请你帮小明求出楼高AB.
27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
A(单位:千克)B(单位:千克)
甲93
乙410
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.
28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n
(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;
(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).旋转AFG,使得BD=CE,求出D点的坐标,并通过计算验证;
(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.
八年级数学参考答案
一、选择题(本大题共8小题,每小题3分,共24分)
题号12345678
答案DBDACCAD
二、填空题(本大题共10小题,每题3分,共30分)
9、x≠110、2011、4012、或或
13、对角线互相平分的四边形是平行四边形。
以上就是数学题八年级下册的全部内容,一、选择题(每小题3分,共30分)1、若 有意义,则m能取的最小整数值是( )A.m=0 B.m=1 C.m=2 D.m=3 2、在菱形ABCD中,E是AB延长线上的点,若∠A=60°,则∠CBE的大小为( )A、120° B、60° C、。