初二上数学期中考试卷?14.如图,三角形纸片 , ,沿过点 的直线折叠这个三角形,使顶点 落在 边上的点 处,折痕为 ,则 的周长为 cm.15. 写出一个大于2的无理数 .16. 为等边三角形, 分别在边 上,且 ,那么,初二上数学期中考试卷?一起来了解一下吧。
八年级第一学期数学期中试卷
一、填空题(每题2分,共26分)
1. 16的平方根是 , = ,— 的立方根是 .
2. 估算比较大小:(填“>”、“<”或“=”)
;—3—2 。
3.已知等腰三角形,其中一边长为7,另外两边长5则周长为为。
4.在数轴上与表示4- 的点的距离最近链帆的整数点所表示的数是 .
5.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是 。
6.若正数m是小于2+ 的整数,则m的值是 。
7.如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE∥BC与AB相交于E.
AB=5cm、AC=2cm,则△ADE的周长=_________cm.
8.如图,D是AB边上的中点,将 沿过D点的直线折叠,使点A落在BC上点F处,若 ,则 度.
9. 等腰三角形一腰上的高与另一边的夹角为80°,棚滑雹则顶角的度数为。
10.在直角三角形中,已知一条直角边的长为8,斜边上的中线长为5,则其斜边的高为 。
二.选择题(每题3分,共15分)
11.2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数保留两个有效数字并用科学记数法表示为 ( )
A. 1.37×108米B. 1.4×108米C.13.7×107米D. 14×107米
12. 在 中有理数的个数是( )
A.2个 B.3个 C.4个D.让薯5个
13.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在 位置,A点落在 位置,若 ,则 的度数是 ( )
A.50°B.60°C.70° D.80°
14.以下列各题的数组为三角形的三条边长:①5,12,13;②10,12,13;
③ , ,2;④15,25,35。
八年级数学上册期中测试试题
满分:100分
姓名:班级: 分数:
一、选择题(本题共10小题;每小题3分,共30分)
1.国旗是一个国家的象征,观察下面的国旗,是轴对没脊称图形的(C)
A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚
C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士
2.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A与A′的关系是( B)
A、关于x轴对称B、关于y轴对称
C、将A点向x轴负方向平移两个单位D、将A点向x轴负方向平移一个单位
3.已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y轴对称,那么点A的对应点A'的坐标为(D).
A.(-4,2) B.(-4,-2)
C.(4,-2) D.(4,2)
4.不借助计算器,估计 的大小应为( C )
A. ~ 之间 B. ~ 之间
C. ~ 之间D. ~ 之间
5.若实数 满足 ,则 的取值范围是( A )
A. B. C. D.
6.将一矩形纸片按如图方式折叠,BC、BD为折痕,折叠后 与在同一条直线上,则∠CBD的度数( B)
A. 大于90° B.等于90°
C. 小于90° D.不能确定友察嫌
7.右图是一个等边三角形木框,甲虫 在边框 上爬行( , 端点除外),设甲虫 到另外两边的距离之和为 ,等边三角形 的高为 ,则 与 的大小关系是( C )
A.B.C.D.无法确定
8.将一张纸片沿图2中①、②的虚线对折得图2中的③,然后剪去一个角,展开铺平后的图形如图2中的④,则图2中的③沿虚线的剪法是( B )
9. 长为 的两根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边 的取值范围为( A )
A. B. C. D.
10.如图所示,下列推理中正确的个数是( B )
①因为OC平分∠好手AOB,点P、D、E分别在OC、OA、OB上,所以PD=PE;
②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;
③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE
A、0个B、1个C、2个D、3个
二、填空题(本题共10小题;每小题3分,共30分)
11.点M(1,2)关于x轴对称点的坐标为__(_1 , -2)_____.
12.如图, , , ,在同一直线上, , ,若要使 ,则还需要补充一个条件:AF=de..
13.如图1中有6个条形方格图,图上由实线组
成的图形是全等形的有 1与62和3 与5 .
14.如图9,两个三角形全等,根据图中所给条件,可得∠α=60°_____。
八年级数学上册期中试题
一、选择题
1.下列运算正确的是()
A. B. C. D.
2.在下列实数中,无理数是()
A. B. C. D.
3.下列判断中错误的是( )
A.有两角和一边对应相等的两个三角形全等
B.有两边和一角对应相等的两个三角形全等
C.有两边和其中一边上的中线对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
4.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.
已知PE=3,则点P到AB的距离是()
A.3 B.4 C.5D.6
5. 如图,已知:AB‖EF,CE=CA,∠E= ,则
∠CAB的度数为
A. B. C.D.
6. 已知一个等腰三角形两内角的度数之比为 ,则这个等腰三角形顶角的度数为()
A. B. C. 或 D.
二、填空题
7. 右图是用七巧板拼成的一艘帆船,其中全等的三角形共有 对.
8. 如图,线段AC与BD交于点O,且OA=OC, 请添加一个条件,使△OAB △OCD,
这个条件是______________________.
9. 如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,
你补充的条件是 .
10. 如图, 垂直平分线段 于点 的平分线 交 于
点 ,连结 ,则 的度数是 .
11. 夷陵长江大桥为三塔斜拉桥.如图,中塔左右两边所挂的最长钢索 ,塔柱底端 与点 间的距离是 米,则 的长是米.
12. 如图,在 中,点 是 上一点, , ,
则度.
13. 已知 中, , , ,将它的一个锐角翻折,使该锐角顶点落在其对边的中点 处,折痕交另一直角边于 ,交斜边冲拆于 ,则 的周长为 .
14.如图,三角形纸片 , ,
沿过点 的直线折叠这个三角形,使顶点 落在 边上的点 处,
折痕为 ,则 的周长为cm.
15.写出一个大于2的无理数 .
16. 为等边三角形, 分别在边 上,且 ,则 为三角形
三、计算题
17. 计算
四、画(作)图题
18. 近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站 ,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②雀判和到张、李两村的距离也相等,请你通过作图确定 点的位置.
五、证明题
19. 已知:如图, 是 和 的平分线, .
求证: .
20. 已知:如图,直线 与 交于点 , , .
求证: .
21. 如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,
过点B作BF‖AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由.
22. 如图,在等边 中,点 分别在边 上,且 , 与 交于点 .
(1)求证: ;
(2)求 的度数.
七、开放题
23.如图, 分别为 的边 上的点, 与 相交于 点.现有四个条件:① ,②顷盯 ,③ ,④ .
(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:
命题的条件是 和 ,命题的结论是 和 (均填序号).
(2)证明你写出的命题.
已知:
求证:
证明:
八、猜想、探究题
24. 已知四边形 中, , , , , , 绕 点旋转,它的两边分别交 (或它们的延长线)于 .
当 绕 点旋转到 时(如图1),易证 .
当 绕 点旋转到 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段 , 又有怎样的数量关系?请写出你的猜想,不需证明.
参考答案
一、选择题
1.C2.B 3. B 4.A 5. B 6. C
二、填空题
7. 28.∠A=∠C,∠B=∠D,OD=OBAB‖CD
9. AO=DO或AB=DC或BO=CO10. (填115不扣分)11.456
12.13.10或11 14.9 15. 如 (答案不唯一)16. 正
三、计算题
17. 解: 原式=1+5(后面三个数中每计算正确一个得2分)4分
= 1 1 5
=5 6分
四、证明题
18.画(作)图题
画出角平分线 3分
作出垂直平分线3分
19.证明:因为 是 和 的平分线,
所以 , .
所以 .
在 和 中,
所以 .
所以.
20. 在 和 中, , ,又 ,
, 3分
, 4分
. 6分
21.(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90o,∴∠CBA=∠CAB=45°.
又∵DE⊥AB,∴∠DEB=90°,∴∠BDE=45°.
又∵BF‖AC,∴∠CBF=90°,
∴∠BFD=45°=∠BDE,∴BF=DB.…………2分
又∵D为BC的中点,∴CD=DB,即BF=CD.
在Rt△CBF和Rt△ACD中,
∴Rt△CBF≌Rt△ACD,
∴∠BCF=∠CAD. ……………………………………………………………4分
又∵∠BCF+∠GCA=90°,
∴∠CAD +∠GCA =90°,即AD⊥CF;……………………………………………6分
(2) △ACF是等腰三角形.
理由:由(1)知: CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,即AF=AD,…………………………………………………8分
∴CF=AF,
∴△ACF是等腰三角形.………………………………………………………10分
22. (1)证明: 是等边三角形,
,
又
, 4分
. 5分
(2)解由(1) ,
得6分
8分
七、开放题
23. 解:(1)①,③;②,④.
(注:①④为题设,②③为结论的命题不给分,
其他组合构成的命题均给4分)
(2)已知: 分别为 的边 , 上的点,
且 , .
求证: .4分
证明: , ,
,且 .
.6分
又 ,
是等腰三角形.
. 8分
八、猜想、探究题
24. 图2成立,图3不成立. 2分
证明图2.
延长 至点 ,使 ,连结 ,
则 ,
,
, ,
,
,
,
,
,
,
即 . 6分
图3不成立,
的关系是 . 8分
可能没有图啊!!对不起你可以上着个网站看看:http://t.3edu.net/Index.html
八年级数学上册期中测试试题(100分)
一、选择题(本题共10小题;每小题友察嫌3分,共30分)
1.国旗是一个国家的象征,观察下面的国旗,是轴对称图形的(C)
A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚
C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士
2.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A与A′的关系是( B)
A、关于x轴对称B、关于y轴对称
C、将A点向x轴负方向平移两个单位D、没脊将A点向x轴负方向平移一个单位
3.已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y轴对称,那么点A的对应点A'的坐标为(D).
A.(-4,2) B.(-4,-2)
C.(4,-2) D.(4,2)
4.不借助计算器,估计 的大小应为( C )
A. ~ 之间 B. ~ 之间
C. ~ 之间D. ~ 之间
5.若实数 满足 ,则 的取值范围是( A )
A. B. C. D.
6.将一矩形纸片按如图方式折叠,BC、BD为折痕,折叠后 与在同一条直线上,则∠CBD的度数( B)
A. 大于90° B.等于90°
C. 小于90° D.不能确定
7.右图是一个等边三角形木框,甲虫 在边框 上爬行( , 端点除外),设甲虫 到另外两边的距离之和为 ,等边三角形 的高为 ,则 与 的大小关系是( C )
A.B.C.D.无法确定
8.将一张纸片沿图2中①、②的虚线对折得图2中的③,然后剪去一个角,展开铺平后的图形如图2中的④,则图2中的③沿虚线的剪法是( B )
9. 长为 的两根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边 的取值范围为( A )
A. B. C. D.
10.如图所示,下列推理中正确的个数是( B )
①因为OC平分∠AOB,点P、D、E分别在OC、OA、OB上,所以PD=PE;
②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;
③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE
A、0个B、1个C、2个D、3个
二、填空题(本题共10小题;每小题3分,共30分)
11.点M(1,2)关于x轴对称点的坐标为__(_1 , -2)_____.
12.如图, , , ,在同一直线上, , ,若要使 ,则还需要补充一个条件:AF=de..
13.如图1中有6个条形方格图,图上由实线组
成的图形是全等形的有 1与62和3 与5 .
14.如图9,两个三角形全等,根据图中所给条件,可得∠α=60°_____。
1.国旗是一个国家的象征,观察下面的国旗,是轴对称图形的(C)
A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚
C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士
2.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A与A′的关系是( B)
A、关于x轴对称B、关于y轴对称
C、将A点向x轴负方向平移两个单位D、将A点向x轴负方向平移一个单位
3.已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y轴对称,那么点A的对应点A'的坐标为(D).
A.(-4,2) B.(-4,-2)
C.(4,-2) D.(4,2)
4.不借助计算器,估计 的大小应为( C )
A. ~ 之间 B. ~ 之间
C. ~ 之间D. ~ 之间
5.若实数 满足 ,则 的取值范围是( A )
A. B. C. D.
6.将一矩形纸片按如图方式折叠,BC、BD为折痕,折叠后 与在同一条直线上,则∠CBD的度数( B)
A. 大于90° B.等于90°
C. 小于90° D.不能确定
7.右图是一个等边三角形木框,甲虫 在边框 上爬行( , 端点除外),设甲虫 到另外两边的距离之和为 ,等边三角形 的高举掘让为 ,则 与 的大小关系是( C )
A.B.C.D.无法确定
8.将一张纸片沿图2中①、②的虚线对折得图2中的③,然后剪去一个角,展开铺平后的图形如图2中的④,则图2中的③沿虚线的剪法是( B )
9. 长为 的两根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边 的取值范围为( A )
A. B. C. D.
10.如图所示,下列推理中正确的个数是( B )
①因为OC平分∠AOB,点P、D、E分别在OC、OA、OB上,所以PD=PE;
②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;
③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE
A、0个B、1个C、2个D、3个
二、填空题(本题共10小题;每小题3分,共30分)
11.点M(1,2)关于x轴对称点的坐标为__(_1 , -2)_____.
12.如图, , , ,在同一直线上, , ,若要使 ,则还需要补充一个条件:AF=de..
13.如图1中有6个条形方格图,图上由实线组
成的图形是全等形的有 1与62和3 与5 .
14.如图9,两个三角形全等,根据图中所给条件,可得∠α=60°_____。
以上就是初二上数学期中考试卷的全部内容,37、如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等。