高二导数知识点?证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.这个的`推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。那么,高二导数知识点?一起来了解一下吧。
追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。
目录
高中导数知识点总结
高中数学的学习方法
如何提升高中数学成绩
高中导数知识点总结
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高中是人生中非常重要的时间段,也是学知识最重要的时间,高二数学知识点有哪些呢。以下是由我为大家整理的“高二数学知识点有哪些”,仅供参考,欢迎大家阅读。
高二数学知识点有哪些
一、集合、简易逻辑(14课时,8个)
1.集合;
2.子集;
3.补集;
4.交集;
5.并集;
6.逻辑连结词;
7.四种命题;
8.充要条件.
二、函数(30课时,12个)
1.映射;
2.函数;
3.函数的单调性;
4.反函数;
5.互为反函数的函数图象间的关系;
6.指数概念的扩充;
7.有理指数幂的运算;
8.指数函数;
9.对数;
10.对数的运算性质;
11.对数函数.
12.函数的应用举例.
三、数列(12课时,5个)
1.数列;
2.等差数列及其通项公式;
3.等差数列前n项和公式;
4.等比数列及其通顶公式;
5.等比数列前n项和公式.
四、三角函数(46课时17个)
1.角的概念的推广;
2.弧度制;
3.任意角的三角函数;
4,单位圆中的三角函数线;
5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式;
7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切;
9.正弦函数、余弦函数的图象和性质;
10.周期函数;
11.函数的奇偶性;
12.函数的图象;
13.正切函数的图象和性质;
14.已知三角函数值求角;
15.正弦定理;
16余弦定理;
17斜三角形解法举例.
五、平面向量(12课时,8个)
1.向量;
2.向量的加法与减法;
3.实数与向量的积;
4.平面向量的坐标表示;
5.线段的定比分点;
6.平面向量的数量积;
7.平面两点间的距离;
8.平移.
六、不等式(22课时,5个)
1.不等式;
2.不等式的基本性质;
3.不等式的证明;
4.不等式的解法;
5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;
2.直线方程的点斜式和两点式;
3.直线方程的一般式;
4.两条直线平行与垂直的条件;
5.两条直线的交角;
6.点到直线的距离;
7.用二元一次不等式表示平面区域;
8.简单线性规划问题;
9.曲线与方程的概念;
10.由已知条件列出曲线方程;
11.圆的标准方程和一般方程;
12.圆的参数方程.
八、圆锥曲线(18课时,7个)
1椭圆及其标准方程;
2.椭圆的简单几何性质;
3.椭圆的参数方程;
4.双曲线及其标准方程;
5.双曲线的简单几何性质;
6.抛物线及其标准方程;
7.抛物线的简单几何性质.
拓展阅读:提升数学成绩的方法
错题分析法
对于数学,多做题是取得数学高分的保证。
一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
(2)集合与元素的关系用符号=表示。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
导数基础
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
导数一般是在高二下学期学习,高三复习中也会反复提及,三轮复习主要是针对导数和圆锥曲线这两个可以出压轴题的知识点。
以上就是高二导数知识点的全部内容,第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。