当前位置: 首页 > 上海自学网 > 高中 > 高二

高二导数知识点,函数的极值知识点

  • 高二
  • 2024-08-25

高二导数知识点?证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.这个的`推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。那么,高二导数知识点?一起来了解一下吧。

高中数学导数单调性题型分类

追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。

目录

高中导数知识点总结

高中数学的学习方法

如何提升高中数学成绩

高中导数知识点总结

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高中常见导数公式表

高中是人生中非常重要的时间段,也是学知识最重要的时间,高二数学知识点有哪些呢。以下是由我为大家整理的“高二数学知识点有哪些”,仅供参考,欢迎大家阅读。

高二数学知识点有哪些

一、集合、简易逻辑(14课时,8个)

1.集合;

2.子集;

3.补集;

4.交集;

5.并集;

6.逻辑连结词;

7.四种命题;

8.充要条件.

二、函数(30课时,12个)

1.映射;

2.函数;

3.函数的单调性;

4.反函数;

5.互为反函数的函数图象间的关系;

6.指数概念的扩充;

7.有理指数幂的运算;

8.指数函数;

9.对数;

10.对数的运算性质;

11.对数函数.

12.函数的应用举例.

三、数列(12课时,5个)

1.数列;

2.等差数列及其通项公式;

3.等差数列前n项和公式;

4.等比数列及其通顶公式;

5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广;

2.弧度制;

3.任意角的三角函数;

4,单位圆中的三角函数线;

5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式;

7.两角和与差的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切;

9.正弦函数、余弦函数的图象和性质;

10.周期函数;

11.函数的奇偶性;

12.函数的图象;

13.正切函数的图象和性质;

14.已知三角函数值求角;

15.正弦定理;

16余弦定理;

17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量;

2.向量的加法与减法;

3.实数与向量的积;

4.平面向量的坐标表示;

5.线段的定比分点;

6.平面向量的数量积;

7.平面两点间的距离;

8.平移.

六、不等式(22课时,5个)

1.不等式;

2.不等式的基本性质;

3.不等式的证明;

4.不等式的解法;

5.含绝对值的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;

2.直线方程的点斜式和两点式;

3.直线方程的一般式;

4.两条直线平行与垂直的条件;

5.两条直线的交角;

6.点到直线的距离;

7.用二元一次不等式表示平面区域;

8.简单线性规划问题;

9.曲线与方程的概念;

10.由已知条件列出曲线方程;

11.圆的标准方程和一般方程;

12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程;

2.椭圆的简单几何性质;

3.椭圆的参数方程;

4.双曲线及其标准方程;

5.双曲线的简单几何性质;

6.抛物线及其标准方程;

7.抛物线的简单几何性质.

拓展阅读:提升数学成绩的方法

错题分析法

对于数学,多做题是取得数学高分的保证。

高中数学导数20种题详细讲解

一、集合与简易逻辑:

一、理解集合中的有关概念

(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。

(2)集合与元素的关系用符号=表示。

(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。

(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

二、函数

一、映射与函数:

(1)映射的概念: (2)一一映射:(3)函数的概念:

二、函数的三要素:

相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)

(1)函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法:④赋值法:

(2)函数定义域的求法:

①含参问题的定义域要分类讨论;

②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

(3)函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

导数题型归纳总结

导数基础

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

高二导数知识点整理总结

导数一般是在高二下学期学习,高三复习中也会反复提及,三轮复习主要是针对导数和圆锥曲线这两个可以出压轴题的知识点。

以上就是高二导数知识点的全部内容,第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。

猜你喜欢