数学书八年级上册?第十一章,三角形。第十二章,全等三角形。第十三章,轴对称。第十四章,整式的乘法与因式分解。第十五章,分式。经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形,那么,数学书八年级上册?一起来了解一下吧。
人教版八年级上册数学课本中有一锋郑些练习,这些练习的答案是什么呢?我整理了关于人教版八年级上册数学课本的答案,希望对大家有帮助!
人教版八年级上册数学课本答案(一)
第50页练习
银岩颂1.提示:作∠AOB的平分线交枣祥MN于一点,则该点即为P点.(图略)
2.证明:如图12-3-25所示,过点P分别作PF,PG,PH垂直于直线 AC,BC,AB
垂足为F,G,H.
∵BD是△ABC中∠ABC外角的平分线,点P在BD上,∴PG=PH.同理PE=PG.∴PF=PC=PH.
故点P到三边AB,BC,CA所在直线的距离相等。
人教版八年级上册数学课本答案(二)
第55页复习题
人教版八年级上册数学课本答案(三)
第60页练习
1.解:(1)(2)(3)(5)是轴对轴图形,它们的对称轴为图中的虚线.
2.(1)(3)是轴对称的,对称轴和对称点略;
自信应该在心中,做八年级数学书本题目应知难而进。我整理了关于八年级上册数学书人教版答案,希望对大家有帮助!
八年级上册数学书人教版答案(一)
第14页
1.解:∠ACD=∠B.
理由:因为CD⊥AB,
所以△BCD是直角三角形,
∠BDC=90°,
所以∠B+∠BCD=90°,
又因为∠ACB= 90°,
所以∠ACD+∠BCD=∠ACB=90°,
所以∠ACD=∠B(同角的余角相等).
2.解:△ADE是直角三角形,
理由:因为∠C=90。,
所以∠A+∠2=90。.
又因为∠1= ∠2,
所以∠A+∠1=90°.
所以△ADE是直角三角形(有两个角互余的三角形是直角三角形陪宽).
八年级上册数学书人教版答案(二)
段乱滚习题12.2
八年级上册数学书人教版答案(三)
第50页
1.提示:作∠AOB的平分线交MN于一握余点,则该点即为P点.(图略)
2.证明:如图12-3-25所示,过点P分别作PF,PG,PH垂直于直线 AC,BC,AB
垂足为F,G,H.
∵BD是△ABC中∠ABC外角的平分线,点P在BD上,∴PG=PH.同理PE=PG.∴PF=PC=PH.
做八年级数学书习题一定要认真,马虎一点就容易出错。下面我给大家分享一些人教版八年级上册数学书答案,大家快来跟我一起欣赏吧。
人教版八年级上册数学书答案(一)
第24页
1.(1)x=65;(2)x=60; (3)x=95.
2.六边形3.四边形
人教版八年级上册数学书答案(二)
第28页
消耐1•解:因为S△ABD=1/2BD.AE=5 cm²,
AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,
所以DC=BD=5 cm,BC=2BD=10 cm.
2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.
3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.
4.5条,6个三角形,这些三角形内角和等于八边形的内角和.
5.(900/7)°
6.证明:由三角形内角和定理,
可得∠A+∠1+42°=180°.
又因为∠A+10°=∠1,
所以∠A十∠A+10°+42°=180°.
则∠A=64°.
因为∠ACD=64°,所以∠A= ∠ACD.
根据内错角相等,两直线平行,可得AB//CD.
7.解:∵∠C+∠ABC+∠A=180°,
∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,
∴∠BDC=90°,
∴∠DBC=90°-72°=18°.
8.解:∠DAC=90°-∠C= 20°,
∠ABC=180°-∠C-∠BAC=60°.
又∵AE,BF是角平分线,
∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,
∴∠AOB=180°-∠ABF-∠BAE=125°.
9.BD PC BD+PC BP+CP
10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.
又因为DF⊥AB,所以∠BFD=90°,
在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,
所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.
11.证明:(1)如图11-4-6所示,因为BE和CF是∠ABC和∠ACB的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.
因为∠BGC+∠1+∠2 =180°,所凳州以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).
(2)因为∠ABC+∠ACB=180°-∠A,
所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.
12.证明:在四边形ABCD中,
∠ABC+∠ADC+∠A+∠C=360°.
因为∠A=∠C=90°,
所以∠ABC+∠ADC= 360°-90°-90°=180°.
又因为BE平分∠ABC,DF平分∠ADC,
所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,
所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.
又因为∠C=90°,
所以∠DFC+∠CDF =90°.
拿粗春所以∠EBC=∠DFC.
所以BE//DF.
人教版八年级上册数学书答案(三)
第32页
1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C和∠E,∠BAC和∠DAE是对应角.
2.解:相等的边有AC=DB,OC=OB,OA=OD;
活着就意味必须要做点什么,请好好努力做八年级数学课本习题。我整理了关于八年级上册数学人教版课本答案,希望对大携袭家有帮助!
八年级上册数学人教版课本答案(一)
第4页
1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.
2.解:(1)不能;(2)不能;(3)能.理由略.
八年级上册数学人教版课本答案(二)
第5页
1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD为三角形的 一条直角边,图(3)中AD在三角形的外部.
锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.
2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF
八年级上册数学人教版课本答案(三)
习题11.1
1.解:图中共6个三角形,分别是△ABD,
△ADE,△AEC,△ABE,AADC,△ABC.
2. 解:2种.
四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,判誉3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形辩冲兄,只有第一组、第四组能构成三角形,
3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.
4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF
5.C
6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),
因为6+6>8,所以此时另两边的长为6 cm,8 cm.
(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.
7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:
当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.
所以这个等腰三角形的周长为16或17;
(2)22.
8.1:2 提示:用41/2BC.AD—丢AB.CE可得.
9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.
又DE//AC,所以∠DAC=∠1.
又DF//AB,所以∠DAB=∠2.
所以∠1=∠2.
认真做 八年级 数学课本习题,就一定能成功!我整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!
八年级上册数学课本答案人教版(一)
第41页练习
1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,
∴∠B=∠D=90°.
在△ABC和△ADC中,
∴△ABC≌△ADC(AAS).
∴AB=AD.
2.解:∵AB⊥BF ,DE⊥BF,
∴∠B=∠EDC=90°.
在△ABC和△EDC,中,
∴△ABC≌△EDC(ASA).
∴AB= DE.
八年级上册数学课本答案人教版芦嫌(二)
习题12.2
1.解:△ABC与△ADC全等.理由如下:
在△ABC与△ADC中,
∴△ABC≌△ADC(SSS).
2.证明:在△ABE和△ACD中,
∴△ABE≌△ACD(SAS).
∴∠B=∠C(全等三角形的对应角相等).
3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.
4.证明:∵∠ABD+∠3=180°,
∠ABC+∠4=180°,
又∠3=∠4,
∴∠ABD=∠ABC(等角的补角相等).
在谨哗胡△ABD和△ABC中,
∴△ABD≌△ABC(ASA).
∴AC=AD.
5.证明:在△ABC和△CDA中,
∴△ABC≌△CDA(AAS).
∴AB=CD.
6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,
所以△ADC≌△BEC(AAS).
所以AD=BE.
7.证明:(1)在Rt△ABD和Rt△ACD中,
∴Rt△ABD≌Rt△ACD( HL).
∴BD=CD.
(2)∵Rt△ABD≌ Rt△ACD,
∴∠BAD=∠CAD.
8.证明:∵AC⊥CB,DB⊥CB,
∴∠ACB=∠DBC=90°.
∴△ACB和△DBC是直角三角形.
在Rt△ACB和Rt△DBC中,
∴Rt△ACB≌Rt△DBC(HL).
∴∠ABC=∠DCB(全等三角形的对应角相等).
∴∠ABD=∠ACD(等角的余角相等).
9.证明:∵BE=CF,
∴BE+EC=CF+EC.∴BC=EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS).
∴∠A=∠D.
10.证明:在△AOD和△COB中.
∴△AOD≌△COB(SAS).(6分)
∴∠A=∠C.(7分)
11.证明:∵AB//ED,AC//FD,
∴∠B=∠E,∠ACB=∠DFE.
又∵FB=CE,∴FB+FC=CE+FC,
∴BC= EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(ASA).
∴AB=DE,AC=DF(全等三角形的对应边相等).
12.解:AE=CE.
证明如下:∵FC//AB,
∴∠F=∠ADE,∠FCE=∠A.
在△CEF和△AED中,
∴△CEF≌△AED(AAS).
∴ AE=CE(全等三角形的对应边相等).
13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.
在△ABD和△ACD中,
∴△ABD≌△祥拦ACD(SSS).
∴∠BAE= ∠CAE.
在△ABE和△ACE中,
∴△ABE≌△ACE(SAS).
∴BD=CD,
在△EBD和△ECD中,
:.△EBD≌△ECD(SSS).
八年级上册数学课本答案人教版(三)
习题12.3
1.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.
在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL).
∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.
2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.
在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL).
∴EB=FC(全等三角形的对应边相等)
3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.
∵∠DOB=∠EOC,OB=OC,
∴△DOB≌△EOC
∴OD= OE.
∴AO是∠BAC的平分线.
∴∠1=∠2.
4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,
∵AD是∠BAC的平分线,
∴∠1=∠2.
又:PE//AB,PF∥AC,
∴∠1=∠3,∠2=∠4.
∴∠3 =∠4.
∴PD是∠EPF的平分线,
又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.
5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,
∴PD=PE,∠OPD=∠OPE.
∴∠DPF=∠EPF.
在△DPF和△EPF中,
∴△DPF≌△EPF(SAS).
∴DF=EF(全等三角形的对应边相等).
6.解:AD与EF垂直.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.
在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).
∴∠ADE=∠ADF.
在△GDE和△GDF中,
∴△GDF≌△GDF(SAS).
∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.
7,证明:过点E作EF上AD于点F.如图12-3-27所示,
∵∠B=∠C= 90°,
∴EC⊥CD,EB⊥AB.
∵DE平分∠ADC,
∴EF=EC.
又∵E是BC的中点,
∴EC=EB.
∴EF=EB.
∵EF⊥AD,EB⊥AB,
以上就是数学书八年级上册的全部内容,1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形 人教版八年级上册数学书答案(二) 第28页 1•解:因为S△ABD=1/2BD.AE=5 cm²,AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线。