八年级上册数学题目及答案?一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、那么,八年级上册数学题目及答案?一起来了解一下吧。
初二数学是一个至关重要的学年,同学们一定要在数学期末模拟考试中仔细审题和答题。以下是我为你整理的初二数学上册期末模拟试卷,希望对大家有帮助!
初二数学上册期末模拟试卷
一、细心选一选(本题共10小题,每小题3分,共30分)
【请将精心选一选的选项选入下列方框中,错选,不选,多选,轮碰皆不得分】
1、点(-1,2)位于( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
2、若∠1和∠3是同旁内角,∠腊斗谈1=78度,那么下列说法正确的是( )
(A)∠3=78度 (B) ∠3=102度 (C)∠1+∠3=180度(D)∠3的度数无法确定
3.如图,已知∠1=∠2,则下列结论一定正确的是( )
(A)∠3=∠4 (B) ∠1=∠3 (C) AB//CD (D) AD//BC
4.小明、小强、小刚家在如图所示的点A、B、C三个地方,它们的连线恰好构成一个直角三角形,B,C之间的距离为5km,新华书店恰好位于斜边BC的中点D,则新华书店D与小明家A的距离是( )
(A)2.5km (B)3km (C)4 km (D)5km
5.下列能断定△ABC为等腰三角形的是( )
(A)∠A=30º、∠B=60º (B)∠A=50º、∠B=80º
(C)AB=AC=2,BC=4 (D)AB=3、BC=7,周长为13
6.某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
智者的梦再美,也不如愚人实干做 八年级 数学试卷的脚印。以下是我为大家整理的八年级数学上册教材全解试题,希望你们喜欢。
八年级数学上册教材全解测试题
第三章 位置与坐标检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共30分)
1.(2016•湖北荆门中考)在平面直角坐标系中,若点A(a,﹣b)在第一象限内辩闹,则点B(a,b)所在的象限是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.在如图所示的直角坐标系中,点M,N的坐标分别为( )
A. M(-1,2),N(2,1) B.M(2,-1),N(2,1)
C.M(-1,2),N(1,2) D.M(2,-1),N(1,2)
第2题图 第3题图
3.如图,长方形 的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 (2,0)
同时出发,沿长方形 的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀
速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012
次相遇点的坐标是( )
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
4.已知点 的坐标为 ,且点 到两坐标轴的距离相等,则点 的坐标
是( )
A.(3,3) B.(3,-3)
C.(6,-6) D.(3,3)或(6,-6)
5.(2016•福州中考)平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)
6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原图案相比( )
A.形状不变,大携稿罩小扩大到原来的 倍
B.图案向右平移了 个单位长度
C.图案向上平移了 个单位长度
D.图案向右平移了 个单位长度,并且向上平移了 个单位长度
7.(2016•武汉中考)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( )
A.a=5,b=1 B.a=-5,b=1
C.a=5,b=-1 D.a=-5,b=-1
8.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的 ,则点 的对应点的坐标是( )
A.(-4,3) B.(4,3)
C.(-2,6)D.(-2,3)
9.如果点 在第二象限,那么点 │ │)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.(湖南株洲中考)在平面直角坐标系中,孔明做走棋敬耐游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依次类推,第 步的走法是:当 能被3整除时,则向上走1个单位;当 被3除,余数是1时,则向右走1个单位,当 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )
A.(66,34) B.(67,33) C.(100,33) D.(99,34)
二、填空题(每小题3分,共24分)
11.在平面直角坐标系中,点 (2, +1)一定在第 象限.
12点 和点 关于 轴对称,而点 与点C(2,3)关于 轴对称,那么 , , 点 和点 的位置关系是 .
13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .
14.(2015•南京中考)在平面直角坐标系中,点A的坐标是(2, 3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(____,____).
15.(2016•杭州中考)在平面直角坐标系中,已知A(2,3),B(0,1), C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为 .
16.如图,正方形 的边长为4,点 的坐标为(-1,1), 平行于 轴,则点 的坐标为 _.
17.已知点 和 不重合.
(1)当点 关于 对称时,
(2)当点 关于原点对称时, = , = .
18.(2015•山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的 ,那么点A的对应点A'的坐标是_______.
第18题图
三、解答题(共46分)
19.(6分)如图所示,三角形ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.
20.(6分)如图,在平面网格中每个小正方形的边长为1个单位长度,
(1)线段CD是线段AB经过怎样的平移后得到的?
(2)线段AC是线段BD经过怎样的平移后得到的?
21.(6分)在直角坐标系中,用线段顺次连接点A( ,0),B(0,3),C(3,3),D(4,0).
(1)这是一个什么图形;
(2)求出它的面积;
(3)求出它的周长.
22.(6分)如图,点 用 表示,点 用 表示.
若用 → → → → 表示由 到 的一种走法,并规定从 到 只能向上或向右走(一步可走多格),用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.
23.(6分)(湖南湘潭中考)在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)B点关于y轴的对称点的坐标为 ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,点A1的坐标为 .
24.(8分)如图所示.
(1)写出三角形③的顶点坐标.
(2)通过平移由三角形③能得到三角形④吗?
(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?
25.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的
位置.
八年级数学上册教材全解试题参考答案
一、选择题
1.D 解析:根据各象限内点的坐标特征解答即可.
∵ 点A(a,﹣b)在第一象限内,
∴ a>0,﹣b>0,∴ b<0,
∴ 点B(a,b)所在的象限是第四象限.故选D.
2.A 解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3.D 解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同,
物体甲与物体乙的路程比为1︰2,由题意知:
①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12× =4,物体乙
行的路程为12× =8,在BC边相遇;
②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2× =8,物
体乙行的路程为12×2× =16,在 边相遇;
③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3× =12,
物体乙行的路程为12×3× =24,在 点相遇,此时甲、乙回到出发点,则每相遇三次,
两物体回到出发点.
因为2 012÷3=670……2,
故两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即物体甲行的路程为
12×2× =8,物体乙行的路程为12×2× =16,在DE边相遇,此时相遇点的坐标为:
(-1,-1),故选D.
4.D 解析:因为点 到两坐标轴的距离相等,所以 ,所以a=-1或a=
-4.当a=-1时,点P的坐标为(3,3);当a=-4时,点P的坐标为(6,-6).
5.A 解析:∵ A(m,n),C(﹣m,﹣n),∴ 点A和点C关于原点对称.
∵ 四边形ABCD是平行四边形,∴ 点D和B关于原点对称.
∵ B(2,﹣1),∴ 点D的坐标是(﹣2,1).故选A.
6.D
7.D 解析:因为点A(a,1)与点A′(5,b)关于坐标原点对称,而点(a,b)关于坐标原点的对称点的坐标是(-a,-b),所以a=-5,b=-1.故选D.
8.A 解析:点 变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的 ,则点 的对应点的坐标是(-4,3),故选A.
9.A 解析:因为点 在第二象限,所以 所以 ︱ ︱>0,因此点 在第一象限.
10.C 解析:在1至100这100个数中:
(1)能被3整除的为33个,故向上走了33个单位;
(2)被3除,余数为1的数有34个,故向右走了34个单位;
(3)被3除,余数为2的数有33个,故向右走了66个单位,
故总共向右走了34+66=100(个)单位,向上走了33个单位.所以走完第100步时所处
位置的横坐标为100,纵坐标为33.故选C.
二、填空题
11.一 解析:因为 ≥0,1>0,所以纵坐标 +1>0.因为点 的横坐标2>0,所以点 一定在第一象限.
12. 关于原点对称 解析:因为点A(a,b)和点 关于 轴对称,所以点 的坐标为(a,-b);因为点 与点C(2,3)关于 轴对称,所以点 的坐标为(-2,3),所以a=-2,b=-3,点 和点 关于原点对称.
13.(3,2) 解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2).
14. 3 解析:点A关于x轴的对称点A′的坐标是(2,3),点A′关于y轴的对称点A″的坐标是( 2,3).
15.(-5,-3) 解析:如图所示,∵ A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴ D点坐标为:(5,3),
∴ 点D关于坐标原点的对称点的坐标为(-5,-3).
第15题答图
16.(3,5) 解析:因为正方形 的边长为4,点 的坐标为(-1,1),所以点 的横坐标为4-1=3,点 的纵坐标为4+1=5,所以点 的坐标为(3,5).
17.(1)x轴 (2)-2 1 解析:两点关于x轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.
18.(2,3) 解析:点A的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的 ,得到它的对应点A'的坐标是 ,即A'(2,3).
三、解答题
19.解:设△A1B1C1的三个顶点的坐标分别为A1( ,将它的三个顶点分别向右平移4个单位长度,再向下平移3个单位长度,则此时三个顶点的坐标分别为( ,
由题意可得 =2, +4=4, -3=3, +4=3, -3=1,
所以A1(-3,5),B1(0,6), .
20. 解:(1)将线段 向右平移3个单位长度(向下平移4个单位长度),再向下平移4个单位长度(向右平移3个单位长度),得线段 .
(2)将线段 向左平移3个单位长度(向下平移1个单位长度),再向下平移1个单位长度(向左平移3个单位长度),得到线段 .
21. 解:(1)因为点B(0,3)和点C(3,3)的纵坐标相同,
点A 的纵坐标也相同,
所以BC∥AD.
因为 ,
所以四边形 是梯形.
作出图形如图所示.
(2)因为 , ,高 ,
故梯形的面积是 .
(3)在Rt△ 中,根据勾股定理,得 ,
同理可得 ,
因而梯形的周长是 .
22.解:走法一: ;
走法二: .
答案不唯一.
路程相等.
23.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;
(2)根据网格结构找出点A,O,B向左平移后的对应点A1,O1,B1的位置,然后顺次连接即可;
(3)根据平面直角坐标系写出坐标即可.
解:(1)B点关于y轴的对称点的坐标为(-3,2);
(2)△A1O1B1如图所示;
(3)点A1的坐标为(-2,3).
第23题答图
24.分析:(1)根据坐标的确定方法,读出各点的横、纵坐标,即可得出各个顶点的坐标;(2)根据平移过程中点的坐标的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,可得三角形④不能由三角形③通过平移得到;
(3)根据对称性,即可得到三角形①,②顶点的坐标.
解:(1)(-1,-1),(-4,-4),(-3,-5).
(2)不能.
(3)三角形②的顶点坐标分别为(-1,1),(-4,4),(-3,5)
(三角形②与三角形③关于 轴对称);
三角形①的顶点坐标分别为(1,1),(4,4),(3,5)
(由三角形③与三角形①关于原点对称可得三角形①的顶点坐标).
25.分析:先根据点A(-3,1),B(-3,-3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.
解:点C的位置如图所示.
10.C 解析:如图所示:∵ AE、BD是直角三角形中谈携闭两锐角平分线,
∴ ∠OAB+∠OBA=90°÷2=45°.
两角平分线组成的角有两个:∠BOE与∠EOD,
根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,
∴ ∠EOD=180°-45°=135°,故选C.
11.140 解析:根据三角形内角和定理得∠C=40°,则∠C的外角为 .
12.270 解析:如图,根据题意可知∠5=90°,
∴ ∠3+∠4=90°,
∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.
13. 解析:利用多边形内角和定理进行计算.
因为 边形与边形的内角和分别为和,
所以内角和增加.
14.27°或63° 解析:当等腰三角形为钝角三角形时,如图①所示,
第14题答图
当等腰三角形为锐角三角形时,如图②所示:
15. 解析:因为为△ABC的三边长,
所以,,
所以原式=
16.10<<36 解析:在△ABC中,AB-BCACAB+BC,所以1048;
在△ADC中,AD-DCACAD+DC,所以436.所以1036.
17.72 解析:正五边形ABCDE的每个内角为 =108°,由△AED是等腰三角形得,∠EAD= (180°-108° )=36°,所以∠DAB=∠EAB-∠EAD=108°-36°=72°.
18.35 解析:设这个多边形的边数为,则,所以这个多边形是十边 形.因为边形的对角线的总条数为,所以这个多边形的对角线的条数为.
19.分析:由于除去的一个内角大于0°且小于180°,因此题目中有两个未知量,但等量关系只有一个,在一些竞赛题目中常常会出现这种问题,这就需要依据条件中两个未知量的特殊含义去求值.
解:设这个多边形的边数为(为自然数),除去的内角为°(0<<180 ),
根据题意,得
∵ ∴
∴ ,∴ .
点拨:本题在利用多 边形的内角和公式得到方程后,又借助角的范围,通过解不等式得到了这个多边形的边数.这也是解决有关多边形的内、外角和问题的 一种常用方法.
20.分析:因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.
解:设AB=AC=2,则AD=CD=,
(1)当AB+AD=30,BC+CD=24时,有2=30,
∴ =10,2 =20,BC=24-10=14.
三边长分别为:20 cm,20 cm,14 cm.
(2)当AB+AD=24,BC+CD=30时,有=24,
∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 c
m,22 cm.
21.分析:人的两腿可以看作是两条线段,走的步子也可看作是线段,则这三条线段正好构成三角形的三边,就应满足三边关系定理.
解:不能.
如果此人一步能走四米多,由三角形三边的关系得,此人两腿长的和大于4米,这与实际情况不符.
所以他一步不能走四米多.
22.分析:已知三角形的三边长,根据三角形的三边关系,列出不等式,再求解.
解:根据三角形的三边关系,得
<<,
0<<6-, 0<<.
因为2,3-x均含裂为正整数,所以=1.
所以三角形的三边长分别是2,2,2.
因此,该三角形是等边三角形.
23.分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;
(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;
(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.
解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△隐漏ADC的面积相等.
(2)AE是△ABC中∠BAC的角平分线,三角形中角平分线有三条.
(3)AF是△ABC中BC边上的高线,高线有时在三角形外部,三角形有三条高线.
24.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.
证明:∵ DG⊥BC,AC⊥BC(已知),
∴ ∠DGB=∠ACB=90°(垂直定义),
∴ DG∥AC(同位角相等,两直线平行).
∴ ∠2=∠ACD(两直线平行,内错角相等).
∵ ∠1=∠2(已知),
∴ ∠1=∠ACD(等量代换),
∴ EF∥CD(同位角相等,两直线平行).
∴ ∠AEF=∠ADC(两直线平行,同位角相等).
∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直定义),
∴ ∠ADC=90°(等量代换).
∴ CD⊥AB(垂直定义).
25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;
(2)根据比高三角形的知识结合三角形三边关系求解只有4个比高系数的三角形的周长.
解:(1)根据定义和 三角形的三边关系,知此比高三角形的三边是2,5,6或3,4,6,则k=3或2.
(2)如周长为37的比高三角形,只有4个比高系数,当比高系数为2时,这个三角形三边分别为9、10、18或8、13、16,当比高系数为3时,这个三角形三边分别为6 、13、18,当比高系数为6时,这个三角形三边长分别为3、16、18,当比高系数为9时,这个三角形三边分别为2、17、18.
一、选择题 (每题3分,共30分)
1.如图,下列图案中是轴对称图形的是 ()
A.(1)、(2) B.(1)、(3)C.(1)、(4)D.(2)、(3)
2.在3.14、 、 、 、 、0.2020020002这六个数中,无理数有( )
A.1个 B.2个 C.3个 D.4个
3.已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为( )
A.(-2,3)B.(2,-3) C.(3,-2) D.(-3,2)
4. 已知正比例函数y=kx (k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是下列选项中的 ()
5.根据下列已知条件,能画出△ABC的是()
A.AB=5,BC=3,AC=8B.AB=4,BC=3,∠A=30°
C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6
6.已知等腰三角形的一个内角等于50º,则该三角形的一个底角的余角是( )
A.25ºB.40º或30ºC.25º或40ºD.50º
7.若等腰三角形的周长是100cm,则雀运能反映这个者岁雹等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()
A B CD
8.设0<k<2,关于x的一次函数 ,当1≤x≤2时,y的最小值是()
A.B. C.k D.
9.下列命题①如果a、b、c为一组勾股数,那么3a、4b、5c仍是勾股数;②含有30°角的直角三角形的三边长之比是3∶4∶5;③如果一个三角形的三边是 , ,首帆 ,那么此三角形
必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(c > a = b),那么a2∶b2∶c2=1∶1∶2;⑤无限小数是无理数。
,感觉复习不怎么样的你,也不要浮躁,要知道临阵磨枪,不快也光。诚心祝愿你考场上“亮剑”,为自己,也为家人!祝陆哗你八年级数学期末考试成功!下面是我为大家精心推荐的人教版八年级数学上册期末试卷,希望能够对您有所帮助。
人教版八年级数学上册期末试题
一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)
1.下列命题中,假命题是()
A.9的算术平方根是3 B. 的平方根是±2
C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1
2.下列命题中,假命题是()
A.垂直于同一条直线的两直线平行
B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c
C.互补的角是邻补角
D.邻补角是互补的角
3.下列长度的线段中,能构成直角三角形的一组是()
A. , , B.6,7,8 C.12,25,27 D.2 ,2 ,4
4.下列计算正确的是()
A. B. C.(2﹣ )(2+ )=1 D.
5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()
A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)
6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()
A. B. C. D.
7.方程组 的解为 ,则被遮盖的两个数分别是()
A.1,2 B.5,1 C.2,﹣1 D.﹣1,9
8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()
A.4 B.8 C.12 D.20
9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()
A.∠ADC>∠AEB B.∠ADC=∠AEB
C.∠ADC<∠AEB D.大小关系不能确定
10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()
A.10cm B.12cm C.19cm D.20cm
二、填空题(本大题共8小题,每小题3分共24分)
11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为件.
12.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为.
13.有四个实数分别为32, ,﹣23, ,请你计算其中有理数的和与无理数的积的差,其结果为.
14.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米棚穗,BC=12米,这块地的面积为.
15.等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC= ,则A点的坐标是.
16.已知 +(x+2y﹣5)2=0,则x+y=.
17.如图,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC于F,∠B=50°,∠CFD=60°,则∠ACB=.
18.已知A地在B地的正南方3km,甲、乙两人同时分别从A、B两地向正北方向匀速行驶,他们与A地的距离s(km)和所行的早和行时间t(h)之间的函数关系如图所示,当他们行进3h时,他们之间的距离为km.
三、(本大题共7小题,19题8分,第20,21,22,23,24小题各6分,25小题8分,共44分)
19.(1)计算:3 + ﹣4
(2)解方程组: .
20.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
21.已知:如图,AB∥CD,AD∥BC,∠1=50°,∠2=80°.求∠C的度数.
22.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.
(1)请你用已知的折线图所提供的信息完成下表:
平均数 方差 10天中成绩在
15秒以下的次数
甲 15 2.6 5
乙
(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.
23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
24.小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是m,他途中休息了min;
(2)当50≤x≤80时,求y与x的函数关系式;
(3)小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点时,小亮行走的路程是多少?
25.已知△ABC,
(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.
(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)
(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.
人教版八年级数学上册期末试卷参考答案
一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)
1.下列命题中,假命题是()
A.9的算术平方根是3 B. 的平方根是±2
C.27的立方根是±3 D.立方根等于﹣1的实数是﹣1
【考点】立方根;算术平方根;命题与定理.
【分析】分别对每个选项作出判断,找到错误的命题即为假命题.
【解答】解:A、9的算术平方根是3,故A选项是真命题;
B、 =4,4的平方根是±2,故B选项是真命题;
C、27的立方根是3,故C选项是假命题;
D、﹣1的立方根是﹣1,故D选项是真命题,
故选C.
【点评】本题考查了立方根和算术平方根的定义,属于基础题,比较简单.
2.下列命题中,假命题是()
A.垂直于同一条直线的两直线平行
B.已知直线a、b、c,若a⊥b,a∥c,则b⊥c
C.互补的角是邻补角
D.邻补角是互补的角
【考点】命题与定理.
【分析】根据邻补角的性质及常用的知识点对各个命题进行分析,从而得到正确答案.
【解答】解:A、垂直于同一条直线的两直线平行,是真命题,不符合题意;
B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,是真命题,不符合题意;
C、互补的角不一定是邻补角,是假命题,符合题意;
D、邻补角是互补的角,是真命题,不符合题意.
故选:C.
【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.
3.下列长度的线段中,能构成直角三角形的一组是()
A. , , B.6,7,8 C.12,25,27 D.2 ,2 ,4
【考点】勾股定理的逆定理.
【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.
【解答】解:A、( )2+( )2≠( )2,故不是直角三角形,此选项错误;
B、62+72≠82,故不是直角三角形,此选项错误;
C、122+252≠272,故不是直角三角形,此选项错误;
D、(2 )2+(2 )2=(4 )2,故是直角三角形,此选项正确.
故选:D.
【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
4.下列计算正确的是()
A. B. C.(2﹣ )(2+ )=1 D.
【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.
【分析】根据二次根式的运算法则,逐一计算,再选择.
【解答】解:A、原式=2 ﹣ = ,故正确;
B、原式= = ,故错误;
C、原式=4﹣5=﹣1,故错误;
D、原式= =3 ﹣1,故错误.
故选A.
【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.
5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()
A.(3,3) B.(3,﹣3) C.(6,﹣6) D.(3,3)或(6,﹣6)
【考点】点的坐标.
【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.
【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,
∴|2﹣a|=|3a+6|,
∴2﹣a=±(3a+6)
解得a=﹣1或a=﹣4,
即点P的坐标为(3,3)或(6,﹣6).
故选D.
【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.
6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()
A. B. C. D.
【考点】一次函数的图象;正比例函数的性质.
【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.
【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,
∴k>0,
∵b=k>0,
∴一次函数y=kx+k的图象经过一、二、三象限.
故选A.
【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.
7.方程组 的解为 ,则被遮盖的两个数分别是()
A.1,2 B.5,1 C.2,﹣1 D.﹣1,9
【考点】二元一次方程组的解.
【专题】计算题.
【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入第一个方程求出被遮住的数即可.
【解答】解:把x=2代入x+y=3中,得:y=1,
把x=2,y=1代入得:2x+y=4+1=5,
则被遮住得两个数分别为5,1,
故选B.
【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()
A.4 B.8 C.12 D.20
【考点】算术平均数.
【分析】只要运用求平均数公式: 即可列出关于d的方程,解出d即可.
【解答】解:∵a,b,c三数的平均数是4
∴a+b+c=12
又a+b+c+d=20
故d=8.
故选B.
【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()
A.∠ADC>∠AEB B.∠ADC=∠AEB
C.∠ADC<∠AEB D.大小关系不能确定
【考点】三角形的外角性质.
【分析】利用三角形的内角和为180度计算.
【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,
在△AEB有∠AEB+∠A+∠B=180°,
∵∠B=∠C,
∴等量代换后有∠ADC=∠AEB.
故选B.
【点评】本题利用了三角形内角和为180度.
10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()
A.10cm B.12cm C.19cm D.20cm
【考点】平面展开-最短路径问题.
【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.
【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.
根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.
故选A.
【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.
二、填空题(本大题共8小题,每小题3分共24分)
11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为5.5件.
【考点】中位数.
【专题】应用题.
【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.
【解答】解:从小到大排列为:3,4,5,6,6,7.
以上就是八年级上册数学题目及答案的全部内容,26.(12分)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题: (1) 写出A、。