当前位置: 首页 > 我要自学 > 初中 > 七年级 > 初一

初一实数知识点总结,初一实数全章知识点归纳总结

  • 初一
  • 2023-08-27

初一实数知识点总结?6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,那么,初一实数知识点总结?一起来了解一下吧。

初一数学什么叫实数

一、实数的概念及分类

1、实数的分类、正有理数、有理数零有限小数和无限循环小数

负有理数

正无理数

无理数无限不循环小数

负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,2等;

π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3

(3)有特定结构的数,如0、1010010001…等;

二并弊、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于

零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。

初一实数全章知识点归纳总结

数与代数A:数与式:

1:有理数

有理数行启察:①整数→正整数/0/负整数 ②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。


绝对值:①在档茄数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。


有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

初一上册数学实数

很多同学对于实数的知识掌握的不全面,我整理了一些数学实数知识点,大家一起来看看吧。

1.无理数

⑴无理数:无限不循环小数

⑵两个无理数的和还是无理数

2.平方根

⑴算术平方根、平方根

一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。

⑵开平方:求一个数的平方根的运算叫开平方

被开方数

3.立方根

⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a的立方根.

⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.

⑶开立方、被开方数

4.公园有多宽

求根式、估算根式、根据面积求边长

5.实数的运算

运算法则(加、减、乘、除、乘方、开方)

运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)

运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"

到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。

6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。

7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。

实数总结知识点

数学在初中学习中是一门十分重要的科目,下面是睁御御总结的初一重点数学知识点,希望能帮助到大家。

实数

1.平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2.立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

3.实数

实数,是有理数和无理数的总称悉岩。实数具有封闭性、有序性、传递性、稠密性、完备性等。

有理数

1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2.数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。

3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

初一数学实数的概念及公式

实数的知识点如下:

按性质符合分类:

有闭迅理数轿绝此:整数和分数统称为有理数,或者“形如m/n(m,n是整数n≠0)”的数叫有理数。无理数:无限不循环小数叫无理数。实数:有理数和无理数统称为实数。

要点诠释:

常见的无理数有以下几种形式:

(1)字母型:如π是无理数,π/2、π/4等都是无理数,而不是分数;

(2)构造型:如2.10100100010000...(每两个1之间依次多一个0)就是一个无限不循环的小数;

(3)根式型:..等都是一些开方开不尽的数;

(4)三角函数型:sin35°、tan27°、cos29°等.

知识点二 实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;

(3)互为相反数的两个数之和等于0.a、b互为相反数,即a+b=0。

2.绝对值

(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:

(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示宏粗了绝对值的本质,即绝对值是一个非负数。

以上就是初一实数知识点总结的全部内容,实数运算 1.加法交换律:a+b=b+a 2.加法结合律:(a+b)+c=a+(b+c)3.乘法交换律:ab=ba。4.乘法结合律:(ab)c=a(bc)5.分配律:a(b+c)=ab+ac 其中a、b、。

猜你喜欢