当前位置: 首页 > 如何自学 > 初中 > 七年级 > 初一

2017期末考试卷子初一,初一语文上册期末考试试卷

  • 初一
  • 2025-02-12

2017期末考试卷子初一?一、选择题(每小题3分,共18分,每题有且只有一个答案正确.) 1.下列运算正确的是() A.3﹣2=6B.m3•m5=m15C.(x﹣2)2=x2﹣4D.y3+y3=2y3 2.在﹣、、π、那么,2017期末考试卷子初一?一起来了解一下吧。

学校的期末试卷哪里找

一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)

1.下列运算正确的是()

A.3﹣2=6B.m3•m5=m15C.(x﹣2)2=x2﹣4D.y3+y3=2y3

2.在﹣、、π、3.212212221…这四个数中,无理数的个数为()

A.1B.2C.3D.4

3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选()

A.10cmB.30cmC.50cmD.70cm

4.下列语句中正确的是()

A.﹣9的平方根是﹣3B.9的平方根是3

C.9的算术平方根是±3D.9的算术平方根是3

5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()

A.6折B.7折C.8折D.9折

6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()

A.4个B.3个C.2个D.1个

二、填空题(每小题3分,共30分)

7.﹣8的立方根是.

8.x2•(x2)2=.

9.若am=4,an=5,那么am﹣2n=.

10.请将数字0.000012用科学记数法表示为.

11.如果a+b=5,a﹣b=3,那么a2﹣b2=.

12.若关于x、y的方程2x﹣y+3k=0的解是,则k=.

13.n边形的内角和比它的外角和至少大120°,n的最小值是.

14.若a,b为相邻整数,且a<

15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=°.

16.若不等式组有解,则a的取值范围是.

三、解答题(本大题共10小条,52分)

17.计算:

(1)x3÷(x2)3÷x5

(x+1)(x﹣3)+x

(3)(﹣)0+()﹣2+(0.2)2015×52015﹣|﹣1|

18.因式分解:

(1)x2﹣9

b3﹣4b2+4b.

19.解方程组:

①;

②.

20.解不等式组:,并在数轴上表示出不等式组的解集.

21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;

若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.

22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.

(1)请在图中画出平移后的′B′C′;

△ABC的面积为;

(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)

23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.

24.若不等式组的解集是﹣1

(1)求代数式(a+1)(b﹣1)的值;

若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.

25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.

①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.

题设(已知):.

结论(求证):.

证明:.

26.某商场用18万元购进A、B两种商品,其进价和售价如下表:

AB

进价(元/件)12001000

售价(元/件)13801200

(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;

若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.

①问共有几种进货方案?

②要保证利润,你选择哪种进货方案?

参考答案与试题解析

一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)

1.下列运算正确的是()

A.3﹣2=6B.m3•m5=m15C.(x﹣2)2=x2﹣4D.y3+y3=2y3

考点:完全平方公式;合并同类项;同底数幂的乘法;负整数指数幂.

分析:根据负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,即可解答.

解答:解:A、,故错误;

B、m3•m5=m8,故错误;

C、(x﹣2)2=x2﹣4x+4,故错误;

D、正确;

故选:D.

点评:本题考查了负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,解决本题的关键是熟记相关法则.

2.在﹣、、π、3.212212221…这四个数中,无理数的个数为()

A.1B.2C.3D.4

考点:无理数.

分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

解答:解:﹣是分数,是有理数;

和π,3.212212221…是无理数;

故选C.

点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选()

A.10cmB.30cmC.50cmD.70cm

考点:三角形三边关系.

分析:首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步找到符合条件的答案.

解答:解:根据三角形的三边关系,得

第三根木棒的长度应大于10cm,而小于50cm.

故选B

点评:本题考查了三角形中三边的关系求解;关键是求得第三边的取值范围.

4.下列语句中正确的是()

A.﹣9的平方根是﹣3B.9的平方根是3

C.9的算术平方根是±3D.9的算术平方根是3

考点:算术平方根;平方根.

分析:A、B、C、D分别根据平方根和算术平方根的定义即可判定.

解答:解:A、﹣9没有平方根,故A选项错误;

B、9的平方根是±3,故B选项错误;

C、9的算术平方根是3,故C选项错误.

D、9的算术平方根是3,故D选项正确.

故选:D.

点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.

5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()

A.6折B.7折C.8折D.9折

考点:一元一次不等式的应用.

分析:利用每件利润不少于2元,相应的关系式为:利润﹣进价≥2,把相关数值代入即可求解.

解答:解:设打x折销售,每件利润不少于2元,根据题意可得:

15×﹣10≥2,

解得:x≥8,

答:最多打8折销售.

故选:C.

点评:此题主要考查了一元一次不等式的应用,本题的关键是得到利润的关系式,注意“不少于”用数学符号表示为“≥”.

6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()

A.4个B.3个C.2个D.1个

考点:平行线的性质;余角和补角.

分析:先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.

解答:解:∵∠CED=90°,EF⊥CD,

∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.

∵AB∥CD,

∴∠DCE=∠AEC,

∴∠AEC+∠EDF=90°.

故选B.

点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.

二、填空题(每小题3分,共30分)

7.﹣8的立方根是﹣2.

考点:立方根.

分析:利用立方根的定义即可求解.

解答:解:∵(﹣2)3=﹣8,

∴﹣8的立方根是﹣2.

故答案为:﹣2.

点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.

8.x2•(x2)2=x6.

考点:幂的乘方与积的乘方;同底数幂的乘法.

分析:根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.

解答:解:x2•(x2)2=x2•x4=x6.

故答案为:x6.

点评:本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.

9.若am=4,an=5,那么am﹣2n=.

考点:同底数幂的除法;幂的乘方与积的乘方.

分析:根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.

解答:解:am﹣2n=,

故答案为:.

点评:本题考查同底数幂的除法,幂的乘方很容易混淆,一定要记准法则才能做题.

10.请将数字0.000012用科学记数法表示为1.2×10﹣5.

考点:科学记数法—表示较小的数.

分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

解答:解:0.000012=1.2×10﹣5.

故答案为:1.2×10﹣5.

点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

11.如果a+b=5,a﹣b=3,那么a2﹣b2=15.

考点:因式分解-运用公式法.

分析:首先利用平方差公式进行分解即可,进而将已知代入求出即可.

解答:解:∵a2﹣b2=(a+b)(a﹣b),

∴当a+b=5,a﹣b=3时,原式=5×3=15.

故答案为:15.

点评:此题主要考查了运用公式法分解因式以及代数式求值,正确分解因式是解题关键.

12.若关于x、y的方程2x﹣y+3k=0的解是,则k=﹣1.

考点:二元一次方程的解.

专题:计算题.

分析:把已知x与y的值代入方程计算即可求出k的值.

解答:解:把代入方程得:4﹣1+3k=0,

解得:k=﹣1,

故答案为:﹣1.

点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.

13.n边形的内角和比它的外角和至少大120°,n的最小值是5.

考点:多边形内角与外角.

分析:n边形的内角和是(n﹣2)•180°,n边形的外角和是360度,内角和比它的外角和至少大120°,就可以得到一个不等式:(n﹣2)•180﹣360>120,就可以求出n的范围,从而求出n的最小值.

解答:解:(n﹣2)•180﹣360>120,解得:n>4.

因而n的最小值是5.

点评:本题已知一个不等关系,就可以利用不等式来解决.

14.若a,b为相邻整数,且a<

考点:估算无理数的大小.

分析:估算的范围,即可确定a,b的值,即可解答.

解答:解:∵,且<

∴a=2,b=3,

∴b﹣a=,

故答案为:.

点评:本题考查了估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.

15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=55°.

考点:平行线的性质.

分析:过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,故可得出∠4的度数,进而得出∠3的度数,由此可得出结论.

解答:解:如图,过点E作EF∥AB,

∵AB∥CD,

∴AB∥CD∥EF.

∵∠1=35°,

∴∠4=∠1=35°,

∴∠3=90°﹣35°=55°.

∵AB∥EF,

∴∠2=∠3=55°.

故答案为:55.

点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.

16.若不等式组有解,则a的取值范围是a>1.

考点:不等式的解集.

分析:根据题意,利用不等式组取解集的方法即可得到a的范围.

解答:解:∵不等式组有解,

∴a>1,

故答案为:a>1.

点评:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.

三、解答题(本大题共10小条,52分)

17.计算:

(1)x3÷(x2)3÷x5

(x+1)(x﹣3)+x

(3)(﹣)0+()﹣2+(0.2)2015×52015﹣|﹣1|

考点:整式的混合运算.

分析:(1)先算幂的乘方,再算同底数幂的除法;

先利用整式的乘法计算,再进一步合并即可;

(3)先算0指数幂,负指数幂,积的乘方和绝对值,再算加减.

解答:解:(1)原式=x3÷x6÷x5

=x﹣4;

原式=x2﹣2x﹣3+2x﹣x2

=﹣3;

(3)原式=1+4+1﹣1

=5.

点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.

18.因式分解:

(1)x2﹣9

b3﹣4b2+4b.

考点:提公因式法与公式法的综合运用.

专题:计算题.

分析:(1)原式利用平方差公式分解即可;

原式提取b,再利用完全平方公式分解即可.

解答:解:(1)原式=(x+3)(x﹣3);

原式=b(b2﹣4b+4)=b(b﹣2)2.

点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

19.解方程组:

①;

②.

考点:解二元一次方程组.

分析:本题可以运用消元法,先消去一个未知量,变成一元一次方程,求出解,再将解代入原方程,解出另一个,即可得到方程组的解.

解答:解:(1)

①×2,得:6x﹣4y=12③,

②×3,得:6x+9y=51④,

则④﹣③得:13y=39,

解得:y=3,

将y=3代入①,得:3x﹣2×3=6,

解得:x=4.

故原方程组的解为:.

方程②两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,

化简,得:3x﹣4y=﹣2③,

①+③,得:4x=12,

解得:x=3.

将x=3代入①,得:3+4y=14,

解得:y=.

故原方程组的解为:.

点评:本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.

20.解不等式组:,并在数轴上表示出不等式组的解集.

考点:解一元一次不等式组;在数轴上表示不等式的解集.

专题:计算题.

分析:分别解两个不等式得到x<4和x≥3,则可根据大小小大中间找确定不等式组的解集,然后利用数轴表示解集.

解答:解:,

解①得x<4,

解②得x≥3,

所以不等式组的解集为3≤x<4,

用数轴表示为:

点评:本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;

若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.

考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.

分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;

根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.

解答:解:(1)5(x﹣2)+8<6(x﹣1)+7

5x﹣10+8<6x﹣6+7

5x﹣2<6x+1

﹣x<3

x>﹣3.

由(1)得,最小整数解为x=﹣2,

∴2×(﹣2)﹣a×(﹣2)=3

∴a=.

点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:

(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;

不等式的两边同时乘以或除以同一个正数不等号的方向不变;

(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.

22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.

(1)请在图中画出平移后的′B′C′;

△ABC的面积为3;

(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)

考点:作图-平移变换.

分析:(1)根据图形平移的性质画出平移后的△A′B′C′即可;

根据三角形的面积公式即可得出结论;

(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.

解答:解:(1)如图所示;

S△ABC=×3×2=3.

故答案为:3;

(3)设AB边上的高为h,则AB•h=3,

即×5.4h=3,解得h≈1.

点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.

23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.

考点:三角形内角和定理;三角形的角平分线、中线和高.

分析:根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.

解答:解:∵AE是△ABC边上的高,∠ACB=40°,

∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,

∴∠DAE=∠CAE=×50°=25°,

∴∠ADE=65°.

点评:本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记定理与概念并准确识图是解题的关键.

24.若不等式组的解集是﹣1

(1)求代数式(a+1)(b﹣1)的值;

若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.

考点:解一元一次不等式组;三角形三边关系.

分析:先把a,b当作已知条件求出不等式组的解集,再与已知解集相比较求出a,b的值.

(1)直接把ab的值代入即可得出代数式的值;

根据三角形的三边关系判断出c﹣a﹣b的符号,再去绝对值符号.合并同类项即可.

解答:解:,

由①得,x<,

由②得,x>2b﹣3,

∵不等式组的解集是﹣1

∴=3,2b﹣3=﹣1,

∴a=5,b=2.

(1)(a+1)(b﹣1)=(5+1)=6;

∵a,b,c为某三角形的三边长,

∴5﹣2

∴c﹣a﹣b0,

∴原式=a+b﹣c+c﹣3

=a+b﹣3

=5+2﹣3

=4.

点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.

①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.

题设(已知):①②.

结论(求证):③.

证明:省略.

考点:命题与定理;平行线的判定与性质.

专题:计算题.

分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.

解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.

求证:∠1=∠2.

证明:∵AB⊥BC、CD⊥BC,

∴AB∥CD,

∴∠ABC=∠DCB,

又∵BE∥CF,

∴∠EBC=∠FCB,

∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,

∴∠1=∠2.

故答案为①②;③;省略.

点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.

26.某商场用18万元购进A、B两种商品,其进价和售价如下表:

AB

进价(元/件)12001000

售价(元/件)13801200

(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;

若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.

①问共有几种进货方案?

②要保证利润,你选择哪种进货方案?

考点:一元一次不等式的应用;二元一次方程组的应用.

分析:(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;

根据题意列出不等式组,解答即可.

解答:解:(1)设购进A种商品x件,B种商品y件.

根据题意得

化简得,

解得,

答:该商场购进A种商品100件,B种商品60件;

设购进A种商品x件,B种商品y件.

根据题意得:

解得:,,,,,

故共有5种进货方案

AB

方案一25件150件

方案二20件156件

方案三15件162件

方案四10件168件

方案五5件174件

②因为B的利润大,所以若要保证利润,选择进A种商品5件,B种商品174件.

点评:此题考查二元一次方程组和一元一次不等式的应用,解答本题的关键是将现实生活中的事件与数学思想联系起来,读懂题意,找出等量关系,列方程求解.

初一期末考试试卷

考试想要取得好成绩就要多做练习,下面我整理了2017初一上册语文期末试题含答案,欢迎大家测试!

一、 积累与运用(30分)

1.下列各项中对加下划线字的注音完全正确的一项 是 ( )(2分)

A.伫(zhù)立 酝酿(rǎng) 枯涸(hé) 骇(hài)人听闻

B.附和(hè) 落难(nàn) 看(kān)护 忍俊不禁(jìn)

C.诱(yòu)惑 雏(chú)形 收敛(liǎn) 猝(zhú)然长逝

D.玷(diàn)污 泯(mǐn)灭 宽恕(shù) 苦心孤诣(yì)

2.下列语境中加下划线词语的解释不正确的一项是 ( )(2分)

A.春天像小姑娘,花枝招展的,笑着,走着。(比喻姿态优美。招展,迎风摆动)

B.耳朵灵敏的 人,能听到弱肉强食处四周的绿叶丛中,蝈蝈在窃窃私语。(指动物中弱者被强者吃掉)

C.我小心翼翼地伸出左脚去探那块岩石,而且踩到了它。(形容谨慎小心,丝毫不敢疏忽的样子。翼翼,谨慎、严肃)

D.这也真够滑稽,但是我决不能让人看出来。(形容言语、动作 有意思)

3.下列句子没有语病的一项是 ( ) (2分)

A.为了纪念中国电影诞生100周年,中央电视台举行了一台隆重的节目。

初一上册数学期末考试卷及答案

【2017初一下册语文期末试卷(北师大版)】

一、语文积累与综合运用(35分)

1、默写古诗文中的名句名篇。(10分)

(1)补写下列名句中的上句或下句。(任选其中6句)(6分)

① 子曰:“_________________________,思而不学则殆。”(《论语》十二章)

② ________________________,风正一帆悬。(王湾《次北固山下》)

③ 不知何处吹芦管, 。 (李益《夜上受降城闻笛》)

④ ________________________,随风直到夜郎西。(李白《闻王昌龄左迁龙标遥有此寄》)

⑤ ________________________,巴山夜雨涨秋池。(李商隐《夜雨寄北》)

⑥ 岐王宅里寻常见,_________________________。(杜甫《江南逢李龟年》)

⑦ _______________________,铁马冰河入梦来。(陆游《十一月四日风雨大作》(其二))

⑧ 河流大野犹嫌束,_________________________。(谭嗣同《潼关》)

(2)默写刘禹锡的《秋词》。(4分)

__________________________,__________________________。

初一数学上学期期末考试卷

在我们的学习生活中,考试试卷的练习是我们的重要学习方式,我们应该认真地对待每一份试卷!下面是有我为你整理的2017年七年级下册期末历史试卷及答案,希望能够帮助到你!

↓↓↓更多的七年级下册期末历史试卷及答案的资讯(详情入口↓↓↓)

七年级下册历史期末试卷及答案

苏教版七年级下册历史期末试卷及答案

七年级下册历史期末大题及答案

七年级历史下册期末试题及答案

人教版七年级历史下册期末试卷及参考答案

七年级历史下册期末试卷及答案

七年级下册期末历史试卷及答案

2017年七年级下册期末历史试卷

一、单 项选择题(在下面的选项中,只有一个是正确答案,请将其选出并填入相应的表格中,每个2分,共40分)

1 .隋朝大运河的中心是( )。

A长安 B.洛阳 C.涿郡 D.江都

2.唐太宗时,赣州发生灾荒。假如你是当时的一名中书令,秉承皇帝的旨意起草了一份救灾计划,接下来你应该交给( )

A.尚书省裁决 B.门下省审议

C. 尚书省执行 D.门下省执行

3.唐明皇李隆基“以姚崇、宋璟为相,励精图治。

初一语文期末考试试卷

初一语文上册期末试卷(附答案)

越接近考试,往往越要在坚实上下功夫。下面是我整理的2016-2017初一语文上册期末试卷(附答案),大家一起来看看吧。

一、积累与运用(24分)

1、阅读下面文字根据拼音写出相应的汉字。(4分)

时间如白jū( )过隙,又到期末时。回望这一学期,学习时,你能做到持之以héng( )吗?遇到问题时,你能做到páo( )根究底吗?遭受挫折时,你能做到不屈不náo( )吗?如果这些你都能做到,成功的大门一定会为你洞开。

2、下列各句中标点符号使用正确的一项是( )。 (2分)

A.这只是一幅极普通的画,清晨看到,晚上看到,一天少说看到三、四次。

B.泰兴人才辈出,孕育了丁文江、吴贻芳、朱东润……等一批杰出人物。

C.《论语》是儒家学派的经典,它与《大学》《中庸》《孟子》统称为“四书”。

D.“这头母牛卖多少钱?老婆婆。”那人问道。

3、下列句子没有语病的一项是( )。 (2分)

A.为了防止H7N9流感疫情不再蔓延,防疫部门加大了监管力度。

B.我们必须及时应对并随时发现日本某些右翼分子对鱼岛的挑衅行为。

C.由长沙制造的全国首款“高性能3D激光打印机”,15天销售了大约30台左右。

以上就是2017期末考试卷子初一的全部内容,【精品文档,百度专属】2014-2015学年天津市河北区七年级(上)期末数学试卷一、选择题(每题3分)1.(3分)计算(﹣3)×4的结果是()A.12B.﹣12C.﹣1D.﹣72.(3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢