当前位置: 首页 > 北京自学网 > 初中 > 七年级 > 初一

人教版初一数学,人教版初一下数学书电子版

  • 初一
  • 2024-06-20

人教版初一数学?人教版初一数学课本目录如下:一、七年级上册:1、第1章:有理数;2、第2章:一元一次方程;3、第3章:图形认识初步;4、第4章:数据的收集与整理;二、七年级下册:1、第5章:相交线与平行线;2、第6章:平面直角坐标系;3、第7章:三角形;4、第8章:二元一次方程组;5、那么,人教版初一数学?一起来了解一下吧。

六年级奥数必考50道题

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级下册数学知识点

概率

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

初一下半年数学知识点

初中数学 是一个很重要的阶段,下面我就大家整理一下初一数学重点难点总结。

人教版初一数学重要知识点

1.有理数:

(1)凡能写成形式的数,都是有理数正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数注意: 0即不是正数,也不是负数;-a不一定是负数, +a也不一定是正数;p不是有理数;

(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

2.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反 数;0的相反数还是0;

(2)相反数的和为0?a+ b=0?a、b互为相反数.

3.绝对值:

(1)正数的绝对值是其本身, 0的绝对值是0 ,负数的绝对值是它的相反数;注意:绝对值的意义是数轴.上表示某数的点离开原点的距离;

(2)绝对值可表示为:或;绝对值的问题经常分类讨论;

4.有理数比大小:

(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小:(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小(5)数轴上的两个数,右边的数总比左边的数大:(6)大数-小数0 ,小数-大数0.

5.互为倒数:

乘积为1的两个数互为倒数;注意: 0没有倒数;若a0 ,那么的倒数是;若ab=1?a、b互为倒数;若ab=- 1?a、b互为负倒数.

初一数学必备知识

一、乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

初中数学书电子版

人教版初一数学课本目录如下:

一、七年级上册:

1、第1章:有理数;

2、第2章:一元一次方程;

3、第3章:图形认识初步;

4、第4章:数据的收集与整理;

二、七年级下册:

1、第5章:相交线与平行线;

2、第6章:平面直角坐标系;

3、第7章:三角形;

4、第8章:二元一次方程组;

5、第9章:不等式与不等式组;

6、第10章:实数。

七年级每天20道计算题

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级数学知识点

生活中的轴对称

1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。

3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。

联系:它们都是图形沿某直线折叠可以相互重合。

2、成轴对称的两个图形一定全等。

3、全等的两个图形不一定成轴对称。

4、对称轴是直线。

5、角平分线的性质

1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

6、线段的垂直平分线

1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。

7、轴对称图形有:

等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。

七年级奥数竞赛试卷

新人教版初中数学几何定理汇总

二、基本定理

1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边

17、三角形内角和定理 三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等

22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的 ***

30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等

角对等边)

35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半

39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的 *** 42、定理1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线

对称

46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角

三角形

48、定理 四边形的内角和等于360° 49、四边形的外角和等于360°

50、多边形内角和定理 n边形的内角的和等于(n-2)×180° 51、推论 任意多边的外角和等于360°

52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a×b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 78、(1)比例的基本性质:

如果a:b=c:d,那么ad=bc

如果 ad=bc ,那么a:b=c:d

79、定理 平行于三角形一边的直线和其他两边(或两边的延长线(需证明))相交,所构成的三角形与原三角形相似

80、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

81、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

82、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 83、判定定理3 三边对应成比例,两三角形相似(SSS)

84、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边

对应成比例,那么这两个直角三角形相似

85、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 86、性质定理2 相似三角形周长的比等于相似比 87、性质定理3 相似三角形面积的比等于相似比的平方 88、圆是定点的距离等于定长的点的 ***

89、圆的内部可以看作是圆心的距离小于半径的点的 ***

90、圆的外部可以看作是圆心的距离大于半径的点的 *** 91、同圆或等圆的半径相等

92、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 93、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 94、到已知角的两边距离相等的点的轨迹,是这个角的平分线

95、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 96、定理 不在同一直线上的三点确定一个圆。

以上就是人教版初一数学的全部内容,人教版七年级数学上册教案1 课题:1.1正数和负数 教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2,能区分两种不同意义的量,会用符号表示正数和负数; 3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。 教学难点正确区分两种不同意义的量。

猜你喜欢