三角函数值初中?一、sin0=sin0°=0 二、cos0=cos0°=1 三、tan0=tan0°=0sin15=0.650;四、sin15°=0.259 五、cos15=-0.759;cos15°=0.966 六、tan15=-0.855;tan15°=0.268 七、sin30°=1/2 八、那么,三角函数值初中?一起来了解一下吧。
根据三角函数的定义,我们还可以得出:
SinA*2+CosA*2=1。
TanA·CotA=1。
TanA=SinA/CosA。
CotA=CosA/SinA。
初中三角函数值积化和差公式
sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]。
cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]。
cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]。
sinα ·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]。
以上内容参考-三角函数值
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB �
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA) �
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
[编辑本段]倍角公式
Sin2A=2SinA•CosA
Cos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1
tan2A=2tanA/1-tanA^2
[编辑本段]三倍角公式
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
[编辑本段]半角公式
[编辑本段]和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
[编辑本段]积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
[编辑本段]诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tanA=tanA = sinA/cosA
[编辑本段]万能公式
[编辑本段]其它公式
[编辑本段]其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
[编辑本段]双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容
(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
一、sin0=sin0°=0
二、cos0=cos0°=1
三、tan0=tan0°=0sin15=0.650;
四、sin15°=0.259
五、cos15=-0.759;cos15°=0.966
六、tan15=-0.855;tan15°=0.268
七、sin30°=1/2
八、cos30°=0.866;
九、tan30°=0.577;
十、sin45°=0.707;
十一、cos45°=0.707
十二、tan45=1.620;tan45°=1
十三、sin60=-0.305;sin60°=0.866
十四、cos60=-0.952;cos60°=1/2
十五、tan60=0.320;tan60°=1.732
十六、sin75=-0.388;sin75°=0.966
十七、cos75=0.922;cos75°=0.259
十八、tan75=-0.421;tan75°=sin75°/cos75°=3.732
十九、sin90=0.894;sin90°=cos0°=1
二十、cos90=-0.448;cos90°=sin0°=0
二十一、tan90=-1.995;tan90°不存在
二十二、sin105=-0.971;sin105°=cos15°
二十三、cos105=-0.241;cos105°=-sin15°
二十四、tan105=4.028;tan105°=-cot15°
二十五、sin120=0.581;sin120°=cos30°
二十六、cos120=0.814;cos120°=-sin30°
二十七、tan120=0.713;tan120°=-tan60°
二十八、sin135=0.088;sin135°=sin45°
二十九、cos135=-0.996;cos135°=-cos45°
三十、tan135=-0.0887;tan135°=-tan45°
三十一、sin150=-0.7149;sin150°=sin30°
三十二、cos150=-0.699;cos150°=-cos30°
三十三、tan150=-1.022;tan150°=-tan30°
三十四、sin165=0.998;sin165°=sin15°
三十五、cos165=-0.066;cos165°=-cos15°
三十六、tan165=-15.041;tan165°=-tan15°
三十七、sin180=-0.801;sin180°=sin0°=0
三十八、cos180=-0.598;cos180°=-cos0°=-1
三十九、tan180=1.339;tan180°=0
四十、sin195=0.219;sin195°=-sin15°
四十一、cos195=0.976;cos195°=-cos15°
四十二、tan195=0.225;tan195°=tan15°
四十三、sin360=0.959;sin360°=sin0°=0
四十四、cos360=-0.284;cos360°=cos0°=1
四十五、tan360=-3.380;tan360°=tan0°=0
以上就是三角函数值初中的全部内容,完整初中三角函数值表如下图所示:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、。