当前位置: 首页 > 北京自学网 > 小学

小学奥数行程问题,奥数数学题 解决问题行程

  • 小学
  • 2023-08-03

小学奥数行程问题?3.小学生奥数行程问题应用题 1、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,那么,小学奥数行程问题?一起来了解一下吧。

六年级奥数鸡兔同笼题目

【 #小学奥数#导语】应用题可以说是小学数学中最为重要的内容,是培养学生数学思维及解题能力的重要途径,做好应用题掉小学生非常重要,它是检验学生堆成掌握程度的重要途径,而且小学生在解答应用题分过程中培养了数学思维能力、问题的分析解决能力。以下是整理的《小学生奥数行程问题应用题》相关资料,希望帮助到您。

1.小学生奥数行程问题应用题

1、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。这列火车的车身总长是多少米?

【解析】

S=(V火车-V人)×时间=(V火车-V车)×时间

V人=3.6千米/小时=1米/秒

V车=10.8千米/小时=3米/秒

S=(V火车-1)×22=(V火车-3)×26

S=286米

或者

合时间比=22:26=11:13

合速度比=13:11

V人:V车=1:3

(14-1):(14-3)=13:11

所以V火车=14米/秒

S=(14-1)×22=286米

2、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?

【解析】

我们来分析一下,全程分成两部分,第一部分是水壶掉入水中,第二部分是追水壶

第一部分,水壶的速度=V水,小船的总速度则是=V船+V水

那么水壶和小船的合速度就是V船,所以帆猜相距2千米的时间就是:2/4=0.5小时

第二部分,水壶的速度=V水,小船的总速度则是=V船-V水

那么水壶和小船的合速度还是V船,所以小船追上水壶的时间还是:2/4=0.5小时

2.小学生奥数行程问题应用题

1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

小升初奥数吃透10类题

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米察丛销,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的郑正3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

六年级10道变态难数学题

这篇《小学奥数行程问题分类讨论》,是特地为大家整理的,希望对大家有所帮助!

小学奥数行铅态扮程问题分类讨论:

行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。

一、一般相遇追及问题。

包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。在杯赛中大量出现,约占80%左右。建议熟练应用标准解法,即s=v×t结合标准画图(基本功)解答。由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。

二、复杂相遇追及问题。

(1)多人相遇追及问题。比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。

(2)多次相遇追及问题。即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称反复折腾型问题。分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。

小学奥数行程问题一共几类题

【 #小学奥数#导语】行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。以下是 考 网整理的《四年级小学生行程问题奥数题》相关资料,希望帮助到您。

1.四年级小学生行程问题奥数题 篇一

例题:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。东西两地相距多少千米?

分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。因为货车每小时比客车多行48-42=6千米,这样货车多行36千米轿敬旦需要36÷6=6小时,即两车相遇的时间。所以,两地相距90×6=540千米。

练习题:

1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。两人相遇时距全程中点3千米,求全程长多少千米。

2、甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。

行程问题7大经典题型

【 #小学奥数#导语】程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。以下是整理的《小学三年级奥数应用题:行程问题》,希望帮助到您。

【篇一】 1、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0。5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?

2、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?

3、两地的距离是1120千米,有两列火车同时相向开出。第一列火车每小时行60千米,第二列火车每小时行48千米。在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?

4、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。

以上就是小学奥数行程问题的全部内容,1.四年级小学生行程问题奥数题 篇一 例题:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。东西两地相距多少千米?分析与解由条件“货车每小时行48千米。

猜你喜欢