目录高中数学答题技巧全套 高中数学187个解题技巧 高考历史必考240考点 高中数学思想方法总结 高中数学答题技巧和解题技巧
数学高中数列解题技巧如下:
高中数学数列方法和技巧:公式法、倒序相加法、错位相减法。
1、公式法。
假如一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式。留意等比数列公示q的取值要分q=1和q-1。
2、倒序相加法。
假如一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的。
3、错咐郑位相减法。
假如一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的。
数列在数学中的作用:
数列是特殊的函数。它的定义域一般是指非负的正整数,有时也可以为自然数,或者自然数的无限子集。自然数是离衡纯颂散的,数列通常称为离散函数,离散函数是相对定义域为实数或者实数的区间的函数而言的。数列作为离散函数,在数学中有着自己的重要地位。
在高中和大学,除了专门研究数学之外,我们所遇到的函数都是裤拦“好的函数”,“好函数”不仅是连续的,而且是可导的,像幂函数、指数函数、对数函数、三角函数等都是好函数,它们具有任意阶导数。数列在研究这些函数中发挥着重要作用。
高中数学解题技巧主要有以下几种方法:
1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方猛燃程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以枝橘虚求根的对称函数。
知道孩子数学学不好的原因:
1、不要让孩子被动学习,还有很多同学在上了高中之后还想初中,那样每天吊儿郎当,这是跟随着老师的思路。自己没有一些衍生,之前没有学习方法,在下课了也不会找。道练习题去练习,就等着上课,并且可前面不会用写对老师上课的内容都不知道上课光想着记笔记,没有思路的学习是没有成效的。
2、老师上课的时候就是把这个知识表达的清楚一点,分析一下重点和难点。然而还有很多学生上课不专心听课。对很多药店也都不知道,只是伍逗笔记记了一大堆,自己也看不懂问题还有很多,在课后也不会进行总结。只是快点儿写作业。写作业的时候,他们也就是乱套提醒他们对概念,法则都不了解。做题也只能是碰巧的做。
在高中数学的学习和考试过程中,掌握一些学习解题技巧,不仅有助于快速解题,还能提高正确率。下面是我分享的高中数学快速解题方法与技巧,一起来看看吧。
高中数学快速解题方法与技巧
乱岁高审题要认真仔细
审题的第一步是读题,这是获取资讯量和思考的过程。读题要细,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些资讯,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。
论证演算的方法
这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法即递推法、座标法、三角法、数形结合法、构造法、配方法等等;
第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函式作图的“描点法”、以及三角函式作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。
限时答题,先提速后纠正错误
很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
学会画图
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系雀乎就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函式的影象和意义及演变过程和条件,对于提高解题速度非常重要。
高中数学的解题套路和技巧
1.思路思想提炼法
催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。
2.典型题型精熟法
抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的哗尺琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目重点、考点集中的题目对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。
3.逐步深入纠错法
巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。
高考数学解题时的注意事项
1.精选题目,避免题海战术
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2.认真分析题目
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联络的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。
3.做好题目总结
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
1在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3能否归纳出题目的型别,进而掌握这类题目的解题方法。
高中数学解题技巧有解决绝对值问题、代数式求值、解含参方程、含数一元二次不等式的解法,具体如下:
一、解决绝对值问题
主要包括化简、求值、方程、不等式、函数等题,基本思路是把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
1、分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
2、零点分段讨论法:适用于含一个字母的多个绝对值的情况。
3、两边平方法:适用于两边培闷非负的方程或不等式。
4、几何意义法:适用于有明显几何意义的情况。
二、代数式求值
方法有:直接代入法、化简代入法、适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
三、解含参方程
方程中除过未知数以配老弯外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用分类讨论法,其原则是:按照类型求解、根据需要讨论、分类写出结论。
四、一元二次不等式的解法
可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤为:二次化为正、判别且求根、画出示意图、解集横轴中。
高中数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料,包括:试顷携题试卷雀皮伏、课件、教材、、各大名师网握渗校合集。