当前位置: 首页 > 上海自学网 > 初中 > 七年级 > 初一

初一上册数学期末考试试卷,初一上期数学期末考试试题

  • 初一
  • 2024-07-17

初一上册数学期末考试试卷?(2)如图5: ,点 绕着点 以 的速度逆时针旋转一周停止,同时点 沿直线 自 点向 点运动,假若点 两点能相遇,求点 运动的速度 . 【苏教版初一上册数学期末试卷答案参考】 (说明:其他解法参照给分) 一、精心选选,走向成功。那么,初一上册数学期末考试试卷?一起来了解一下吧。

初中七年级上册数学试卷

辛劳的付出必有丰厚回报,寒窗苦读为前途,望子成龙父母情。祝你七年级数学期末考试取得好成绩,期待你的成功!我整理了关于七年级数学上册期末试题人教版,希望对大家有帮助!

七年级数学上册期末试题

一、选择题:每小题3分,共20分

1.﹣8的相反数是()

A.﹣8 B.8 C. D.

2.下列计算结果,错误的是()

A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21

3.1500万(即15000000)这个数用科学记数法可表示为()

A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108

4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()

A.1 B.11 C.15 D.23

5.下列方程中是一元一次方程的是()

A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0

6.用一副三角板不可以拼出的角是()

A.105° B.75° C.85° D.15°

7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()

A.10cm B.2cm C.10cm或者2cm D.无法确定

8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()

A.120° B.105° C.100° D.90°

9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()

A.330元 B.210元 C.180元 D.150元

10.指出图中几何体截面的形状()

A. B. C. D.

二、填空题:每小题2分,共14分

11.化简:﹣[﹣(+5)]=.

12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是.

13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为.

14.同类项﹣ a3b,3a3b,﹣ a3b的和是.

15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.

16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.

17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为.

三、解答题

18.计算:

(1)|(﹣7)+(﹣2)|+(﹣3)

(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.

19.在数轴上表示下列各数,并用“<”号把它们连接起来.

1.5,0,﹣3,﹣(﹣5),﹣|﹣4|

20.解方程:

(1) x﹣1=2

(2) = .

21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.

22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度数;

(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.

23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.

24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.

七年级数学上册期末试题人教版参考答案

一、选择题:每小题3分,共20分

1.﹣8的相反数是()

A.﹣8 B.8 C. D.

【考点】相反数.

【分析】直接根据相反数的定义进行解答即可.

【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.

故选B.

【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.

2.下列计算结果,错误的是()

A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21

【考点】有理数的乘法.

【分析】根据结果的符号即可作出判断.

【解答】解:A、(﹣3)×(﹣4)×(﹣ )=﹣(3×4× )=﹣3,正确;

B、(﹣ )×(﹣8)×5中负因数的分数为偶数,积为正数,故B选项错误;

C、(﹣6)×(﹣2)×(﹣1)=﹣(6×2×1)=﹣12,正确;

D、(﹣3)×(﹣1)×(+7)=3×1×7=21,正确.

故其中错误的是B.

故选:B.

【点评】本题主要考查的是有理数的乘法,掌握有理数的乘法法则是解题的关键.

3.1500万(即15000000)这个数用科学记数法可表示为()

A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】解:15000000=1.5×107,

故选 C.

【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()

A.1 B.11 C.15 D.23

【考点】代数式求值.

【专题】计算题;实数.

【分析】由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.

【解答】解:∵2x2+3y+3=8,

∴2x2+3y=5,

则原式=3(2x2+3y)+8=15+8=23,

故选D

【点评】此题考查了代数式求值,利用了整体代换的方法,熟练掌握运算法则是解本题的关键.

5.下列方程中是一元一次方程的是()

A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0

【考点】一元一次方程的定义.

【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).

【解答】解:A、x+3=3﹣x是一元一次方程,故A正确;

B、x+3=y+2是二元一次方程,故B错误;

C、 =1是分式方程,故C错误;

D、x2﹣1=0是一元二次方程,故D错误;

故选:A.

【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.

6.用一副三角板不可以拼出的角是()

A.105° B.75° C.85° D.15°

【考点】角的计算.

【专题】计算题.

【分析】一副三角板各角的度数是30度,60度,45度,90度,因而把他们相加减就可以拼出的度数,据此得出选项.

【解答】解:已知一副三角板各角的度数是30度,60度,45度,90度,

可以拼出的度数就是用30度,60度,45度,90度相加减,

45°+60°=105°,

30°+45°=75°,

45°﹣30°=15°,

显然得不到85°.

故选:C.

【点评】此题考查的知识点是角的计算,关键明确用一副三角板可以拼出度数,就是求两个三角板的度数的和或差.

7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()

A.10cm B.2cm C.10cm或者2cm D.无法确定

【考点】两点间的距离.

【专题】分类讨论.

【分析】讨论:当点C在线段AB的延长线上时,AC=AB+BC;当点C在线段AB的上时,AC=AB﹣BC,再把AB=6cm,BC=4cm代入计算可求得AC的长,即得到A、C间的距离.

【解答】解:当点C在线段AB的延长线上时,如图,

AC=AB+BC=6+4=10(cm),

即A、C间的距离为10cm;

当点C在线段AB的上时,如图,

AC=AB﹣BC=6﹣4=2(cm),

即A、C间的距离为2cm.

故A、C间的距离是10cm或者2cm.

故选C.

【点评】本题考查了两点间的距离:两点间的线段的长叫两点间的距离.也考查了分类讨论思想.

8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()

A.120° B.105° C.100° D.90°

【考点】钟面角.

【专题】计算题.

【分析】由于钟表上的时间为晚上8点,即时针指向8,分针指向12,这时时针和分针之间有4大格,根据钟面被分成12大格,每大格为30°即可得到它们的夹角.

【解答】解:∵钟表上的时间为晚上8点,即时针指向8,分针指向12,

∴这时时针和分针之间的夹角(小于平角)的度数=(12﹣8)×30°=120°.

故选A.

【点评】本题考查了钟面角的问题:钟面被分成12大格,每大格为30°.

9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()

A.330元 B.210元 C.180元 D.150元

【考点】一元一次方程的应用.

【分析】已知八折出售可获利90元,根据:进价=标价×8折﹣获利,可列方程求得该商品的进价.

【解答】解:设每件的进价为x元,由题意得:

300×80%﹣90=x

解得x=150.

故选D.

【点评】本题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×80%﹣获利,利用方程思想解答.

10.指出图中几何体截面的形状()

A. B. C. D.

【考点】截一个几何体.

【分析】用平面取截一个圆锥体,横着截时截面是椭圆或圆(截面与上下底平行).

【解答】解:当截面平行于圆锥底面截取圆锥时得到截面图形是圆.

故选B.

【点评】本题考查几何体的截面,关键要理解面与面相交得到线

二、填空题:每小题2分,共14分

11.化简:﹣[﹣(+5)]=5.

【考点】相反数.

【分析】根据多重符号化简的法则化简.

【解答】解:﹣[﹣(+5)]=+5=5.

【点评】本题考查多重符号的化简,一般地,式子中含有奇数个“﹣”时,结果为负;式子中含有偶数个“﹣”时,结果为正.

12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是1.

【考点】非负数的性质:偶次方;非负数的性质:绝对值.

【分析】根据非负数的性质可求出x、y的值,再将它们代入(x+y)2中求解即可.

【解答】解:∵|x+1|+(x﹣y+3)2=0,

∴x+1=0,x﹣y+3=0;

x=﹣1,y=2;

则(x+y)2=(﹣1+2)2=1.

故答案为:1.

【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.

13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为﹣14.

【考点】数轴.

【分析】根据题意和数轴可以得到被墨迹盖住的部分之间的整数,从而可求得墨迹盖住的整数之和.

【解答】解:根据题意和数轴可得,

被墨迹盖住的整数之和是:(﹣6)+(﹣5)+(﹣4)+(﹣3)+(﹣2)+1+2+3=﹣14,

故答案为:﹣14.

【点评】本题考查数轴,解题的关键是明确题意,利用数形结合的思想写出被遮住部分之间的所有整数.

14.同类项﹣ a3b,3a3b,﹣ a3b的和是 a3b.

【考点】合并同类项.

【分析】根据合并同类项系数相加字母及指数不变,可得答案.

【解答】解:﹣ a3b+3a3b+﹣ a3b= a3b,

﹣ a3b,3a3b,﹣ a3b的和是 a3b,

故答案为: a3b.

【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.

15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=﹣10.

【考点】解一元一次方程.

【专题】计算题;新定义;一次方程(组)及应用.

【分析】已知等式利用题中的新定义化简,求出解即可得到n的值.

【解答】解:利用题中的新定义化简得:2n+2﹣n=﹣8,

移项合并得:n=﹣10,

故答案为:﹣10

【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.

16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.

【考点】角平分线的定义.

【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.

【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,

∴∠DEB=2∠DEF=2×70°=140°,

∴∠AED=180°﹣∠DEB=180°﹣140°=40°.

故答案为:40°.

【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.

17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为﹣2016a2016.

【考点】单项式.

【专题】规律型.

【分析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.

【解答】解:第2016个单项式为:﹣2016a2016,

故答案为:﹣2016a2016.

【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.

三、解答题

18.计算:

(1)|(﹣7)+(﹣2)|+(﹣3)

(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.

【考点】有理数的混合运算.

【分析】(1)先算绝对值符号里面的,再算加减即可;

(2)先算乘方,再算乘除,最后算加减即可.

【解答】解:(1)原式=9﹣3

=6;

(2)原式=16+3×(﹣1)﹣2×9

=16﹣3﹣18

=﹣5.

【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.

19.在数轴上表示下列各数,并用“<”号把它们连接起来.

1.5,0,﹣3,﹣(﹣5),﹣|﹣4|

【考点】有理数大小比较;数轴.

【分析】把各数在数轴上表示出来,从左到右用“<”号连接起来即可.

【解答】解:如图所示,

故﹣|﹣4|<﹣3<0<1.5<﹣(﹣5).

【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.

20.解方程:

(1) x﹣1=2

(2) = .

【考点】解一元一次方程.

【专题】计算题;一次方程(组)及应用.

【分析】(1)方程去分母,移项合并,把x系数化为1,即可求出解;

(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.

【解答】解:(1)去分母得:x﹣2=4,

解得:x=6;

(2)去分母得:3(3y﹣1)﹣12=2(5y﹣7),

去括号得:9y﹣3﹣12=10y﹣14,

移项合并得:y=﹣1.

【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.

【考点】整式的加减—化简求值.

【分析】首先化简,进而合并同类项进而求出代数式的值.

【解答】解:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3)

=2x3﹣4y2﹣x+2y﹣x+3y﹣2x3,

=4y2﹣2x+5y,

∵x=﹣3,y=﹣2,

∴原式=﹣4y2﹣2x+5y=﹣4×(﹣2)2﹣2×(﹣3)+5×(﹣2)=﹣20.

【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.

22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度数;

(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.

【考点】角的计算;角平分线的定义.

【分析】(1)根据角平分线的定义,邻补角的定义,可得答案;

(2)根据角的和差,可得答案.

【解答】解:(1)由角平分线的定义,得

∠AOD=∠COD= ∠AOC= ×50°=25°.

由邻补角的定义,得

∠BOD=180°﹣∠AOD=180°﹣25°=155°;

(2)∠BOE=∠COE,理由如下:

由角的和差,得

∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,

∠COE=∠DOE﹣∠COD=90°﹣25°=65°,

则∠BOE=∠COE.

【点评】本题考查了角的计算,利用角的和差是解题关键.

23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.

【考点】两点间的距离.

【专题】方程思想.

【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.

【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.

∵点E、点F分别为AB、CD的中点,∴AE= AB=1.5xcm,CF= CD=2xcm.

∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.

∴AB=12cm,CD=16cm.

【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.

24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.

【考点】一元一次方程的应用.

【分析】可分为购买一等席和二等席;一等席和三等席;二等席和三等席位三种情况,然后根据门票总数为36张,总费用为10050元,列方程求解即可.

【解答】解:①设购买一等席x张,二等席(36﹣x)张.

根据题意得:600x+400(36﹣x)=10050.

解得:x=﹣21.75(不合题意).

②设购买一等席x张,三等席(36﹣x)张.

根据题意得:600x+250(36﹣x)=10050.

解得:x=3.

∴可购买一等席3张,二等席位33张.

③设购买二等席x张,三等席(36﹣x)张.

根据题意得:400x+250(36﹣x)=10050.

解得:x=7.

∴可购买二等席7张,二等席位29张.

答;共有2中方案可供选择,方案①可购买一等席3张,二等席位33张;方案②可购买二等席7张,二等席位29张.

【点评】本题主要考查的是一元一次方程的应用,根据门票的总张数为36张,总票价为10050元分类列出方程是解题的关键.

初一数学人教版期末考试试卷

初一上学期期末考试数学试题

一、你能填得又快又准吗?(20×2分

=

40分)

1.如果向东运动5m记作+5m,那么向西运动3m应记作

m。

2.既不是正数,也不是负数的数是

3.―(―3)的相反数是

;―1的倒数是

4.如果a〈

0,则

|a|=

5.单项式-

的系数是

,次数是

6.若|a+3|+(b-2)2

=

0,则a-b

=

7.如图1:AB

8.69°30′的余角等于

9.0.02079保留三个有效数字约为

10.单项式-

x2my与

x6yn的和是一个单项式祥晌,则m

=

,n

=

11.把多项式a4+4a3b-6ab2+4ab3按b的降幂排列为

12.把一根木条钉在墙上使其固定,至少要钉

个钉子,

根据

13.按科学记数法,把15800000写成

14.如图2:∠1

=∠2,则

,∠BAD

+

=

180°。

二、你一定能选对!(2分×8

=16分)

15.关于有理数,下面的说法正确的是

(A)有最大的数

(B)有绝对值最小的数

(C)有最小的数

(D)有绝对值最大的数

16.已知a、b、c均为有理数,则a

+

b

+

c的相反数是

(A)

b

+

a

-

c

(B)-

b

-

a

-

c

(C)-b

a

+c

(D)b

a

+

c

17.平面上有任意三点,过其中两点能画出直线条数

(A)1

(B)

3

(C)

1或3

(D)无数条

18.a、b互为倒数,x、y互为相反数,则(a+b)(x+y)-ab的值为

(A)0

(B)

1

(C)

-1

(D)无法确定

19.下列各组数中,大小关系判断正确一组是

(A)(-2)3>-23

(B)(-2)2<

22

(C)

>-

(D)(-2)3>(-2)2

20.若某两位数的个位数字为瞎培a,十位数字为b,则此两位数可表示为

(A)a

+

b

(B)

ba

(C)10b

+

a

(D)10a

+

b

21.如图所示的立方体,如果把它展开,可以是下列图形中的

(A)

(B)

(C)

(D)

22.在图中,∠1与∠2是同位角的有

(A)①、②

(B)①、③

(C)②、③

(D)②、④

三、你来算一算!千万别出错哟!!!

23.计算:(每题3分,共12分)

(1)

(2)-14+50÷22×(―

(3)

(4)0÷(-5)-

53-

5

24、化简求值:(2x

-

xyz)-

2(x

-

y

+

xyz)+(xyz

-

2y

),

其中x

=

1,y

=

2,z

=

-

3;(5分)

四、识图来计算:一定要看准了!!!(每题3分,共6分)

25、如图、已知:线段AB

=

10㎝,C为AB的中点,求:AC的长;

26、如图、已知:AD//BC,

1

=

C,

B

=

60

,求:

C的度数;

五、说明题:(共5分)

27、已知:B、A、E在一条直线上,

1

=

B。

六年级数学期末考试卷

一、精心选一选(每小题3分,共24分)

1.若与互为相反数,则=.()

A.14B.-14C.49D.-49

2.下列说法中,不正确的是()

A.有最小正整数,没有最小的负整数 B.若一个数是整数,则它一定是有理数

C.既不是正有理数,也不是负有理数 D.正有理数和负有理数组成有理数

3.对于由四舍五入得到的近似数,下列说法正确的是()

A.有3个有效数字,精确到百分位 B.有6个有效数字,精确到个数

C.有2个有效数字,精确到万位 D.有3个有效数字,精确到千位

4.下列各数中,不相等的组数有()

①(-3)2与-32②(-3)2与32③(-2)3与-23④3与⑤(-2)3与3

A.0组B.1组C.2组D.3组

5.下列说法正确的是()

A.同位角相等B.两点之间的距离就是指连接两点的线段的长度

C.两点之间直线最短D.火车从海安到南通所行驶的路程就是海安到南通的距离

6.已知,则的值是()

A.25B.30C.35D.40

7.下图右边四个图形一定不是左边展开图的立体图是()

8.今欲在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),试问需要多少面积的地毯?()

A.B.C.D.

二、耐心填一填.(每小题3分,共30分)

9.某市一天上午气温是12℃,下午上升了2℃,半夜(24时)下降了15℃,半夜的气温是_____℃.

10.在数轴上,与表示的点距离为3的点所表示的数是_________.

11.把多项式3xy-5xy+y-2x按x的降幂排列是.

12.小明从A处向北偏东方向走10m到达B处,小亮也从A处出发向南偏西方向走15m到达C处,则BAC的度数为度.

13.若∠1+∠3=180,∠2+∠4=180,且∠1=∠4,则∠2∠3,

理由是 .

14.如图所示,∠AOB是平角,∠AOC=300,∠BOD=600,

OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于_____.

15.一只船沿河顺水而行的航速为30千米/小时,若按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为 千米.

16.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷米,根据题意,列出方程为.

距离期末考试越来越近了,这是检验我们一学期学习成果的时期。

初一上期数学期末考试试题

苏教版七年级(上)数学期末试卷(满分120分)

姓名___________ 得分______

一. 单项选择题 (每小题2分, 共20分)

1. 的倒数的相反数的绝对值是

A. B. -C. 3D. -3

2. 计算(-3)2-(-3)3-22+(-2)2的结果是( )

A. 36B. -18C. -36D. 18

3. 绝对值不大于4的整数的积是

A. 16B. 0C. 576D. -1

4. 关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )

A. 2B. 3C. 1或2D. 2或3

5. 某商店有两个进价不同的计算器都卖了64元, 其中一个盈利60%, 另一个亏损20%, 在这次买卖中, 这家商店( )

A. 不赔不赚B. 赚了32元C. 赔了8元D. 赚了8元

6. 设x表示两位数, y表示三位数, 如果把x放在y的左边组成一个五位数, 可表示为( )

A. xyB. 1000x+yC. x+yD. 100x+y

7. 把一个周角n等分, 每份是180, 则n等于( )

A. 18B. 19C. 20D. 21

8. 两个角的大小之比是7:3, 它们的差是720, 则这两个角的关系是( )

A. 相等B. 互补C. 互余D. 无法确定

9. 下图右边四个图形中是左边展形图的立体图的是( )

10. 设 "、△、□" 表示三种不同的物体, 现用天平称了两次, 情况如图所示, 那么这三种物体质量大小从大到小的顺序排列正确的是 B( )

A. □△B. □△C. △□D. △□

二. 填空题. (每小题2分, 共20分)

11. 如图所示, OA、OB是两条射线, C是OA上一点, D、E是OB上两点, 则图中共有_________条线段, 它们分别是______________________________; 图中共有______条射线, 它们分别是_____________________________.

12. 如图, 已知A、B、C、D是同一直线上的四点, 看图填空: AC=_______+BC,

BD=AD-________, AC<________.

13. 在图中, 共有k个三角形, 则k+2001=_______________.

14. 3.760=_______度_______分________秒; 2203224"=________________度.

15. 将图中所示的纸片沿虚线折叠起来的几何体是______________. 且1的对面是_________, 2的对面是___________, 3的对面是____________.

16. 在等式y=kx+b中,当x=0时,y=2;当x=3时,y=3,则=______.

17. 若x=-1是关于x的方程ax2-bx+c=0的解,

则=___________, =____________.

18. 方程=1-去分母后得___________________.

19. 观察方程(x-1)(x+2)=0的解是_______________________________.

20. 将1299万保留三位有效数字为______________________.

三. 计算题. (每小题4分, 共16分)

21. 22. -1100 -(1-0.5)××[3-(-3)2]

23. -32+(-3)2+(-5)2×(-)-0.32÷|-0.9|24. (-2×5)3-(-1)×(-)2-(-)2

四. 解方程. (每小题4分, 共12分)

25. 5(x+8)-5=6(2x-7) 26.27.五. 解答题.

28. (3分)一个正方体6个面分别写着1、2、3、4、5、6, 根据下列摆放的三种情况, 那么每个数对面上的数是几?

29. (5分)如图, 数轴上的三点A、B、C分别表示有理数a、b、c, 化简|a-b|-|a+c|+|b-c|.

30. (6分)若a、b互为相反数, c是最小的非负数, d是最小的正整数, 求(a+b)d+d-c的值.

31. (6分)如图所示, 直线AB、CD相交于O, OE平分∠AOD, ∠FOC=900, ∠1=400, 求∠2和∠3的度数.

32. (6分)一项工程由甲单独做需12天完成, 由乙单独做需8天完成, 若两人合作3天后, 剩下部分由乙单独完成, 乙还需做多少天?

33. (6分) 一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■( 此处因印刷原因看不清楚).文文做对了16道,但只得了74分,这是为什么?

参考答案

一. 选择题

1. C 2. A 3. B 4. D 5. D 6. B 7. C 8. B 9. D [点拨: 注意小正方形成对角线的形式] 10. B

二. 填空题

11. 6, CO, CD, CE, OD, OE, DE; 5, OC, CA, OD, DE, EB

12. AB; AB; AD13. 200714. 3, 45, 36; 22.54

15. 正方体, 4, 5, 616. 1617. -1, -1

18. 4x=6-(1-x)

19. x=1或x=-2

20. 1.30×107

三. 计算题21. 622. 解原式=

23. 解析: "+" "-"号把式子分成四部分, 分别计算再加减.

解原式=-9+9+25×()-0.09÷0.9=-9+9+(-20)-0.1=-20-0.1=-20.1

24. -1099

四. 解方程25. x=1126. x=-927. y=五. 解答题

28. 1对4, 2对5, 3对6

29. 原式=b-a+a+c+c-b=2c

30. a+b=0, c=0, d=1(a+b)d+d-c=1

31. 解: ∠1=400, ∠BOD=900-400=500

∠AOD=1800-500=1300,

∠AOC与∠AOD互补,

∴∠3=500, ∠2=∠AOD=650

32. 解: 设乙还需做x天, 由题意得, x=3

六. 附加题

33. 6.设一题不做或做错得x分,16×5+(20-16)x=74,x=-4

初一上册数学必刷题

一、选择题(每题3分,共36分)

1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )

A.1个 B.2个 C.3个 D.4个

2.下列命题中,正确的是( )

①相反数等于本身的数只有0; ②倒数等于本身的数只有1;

③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;

A.只有③ B. ①和② C.只有① D. ③和④

3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )

A.437℃ B.183℃ C.-437℃ D.-183℃

4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )

A.5.475*10^11 B. 5.475*10^10

C. 0.547*10^11 D. 5.475*10^8

5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )

A.这两个加数的符号都是正的 B.这两个加数的符号都是负的

C.这两个加数的符号不能相同 D.这两个加数的符号不能确定

7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )

A.1个 B.2个 C.3个 D.4个

8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。

以上就是初一上册数学期末考试试卷的全部内容,初一数学期末试卷 学年度第一学期期末考试初一数学试卷 时间:100分钟总分:150分第一卷(满分:100分)一、填空题(每题2分,共30分)1、4xyz是次单项式,系数 2、x2-2xy+y2是次多项式 3、3x2-x+的一次项系数是,常数项是 4、如果x+y=1,则x=(用y表示x)5、若a表示正数。

猜你喜欢