目录初三中考数学计算题 初三数学计算题大全 中考经典计算题100道 初中数学中考计算题综合 初三50道计算题及答案
中考数学上有哪些常见的题型呢?以下是我为大家整理分享的,希望能对大家有所帮助缺中。
中考数学填空题主要题型
一是定量型填空题,二是定性型填空题,中考数学前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的中考数学概念、定理和性质等数学基础知识的理解和熟练程度。
当然中考数学这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。中考数学选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试时可走捷径,运用一些答题技巧,在这一类题中大致总结出三种答题技巧。
推荐阅读:适合学习中考生学习数学的APP
中考数学答题技巧充分利用考前5分钟
很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做中考数学题的,但是可以看题。发现很多考生拿到试卷之后,就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
电脑阅卷书写要工整
中考数学卷面书写既要速度快,又要整洁、准确。电脑阅卷要求考生填涂答题卡准确,字迹工整,大题步骤明晰。草稿纸书写要有规划,便于回头检查。不少计算题的失误,都是因为书写太潦草。正确的做法是:在题卡上列出详细的步骤,不要跳步。只有少量数学运算才用草纸。
事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。
做题顺序:由易到难
一般大型考试是伏轿山有一个铺垫的,如前边的中考数学题目,往往入手比较简单,越往后越难,这样有利于学生正常的帆腊发挥。1979年的高考,数学就吓倒了很多人。它第一个题就是一个大题,很多学生就被吓蒙了,整个考试考得一塌糊涂。后期为了避免同样的情况再出现,国家在命题的时候一般遵循由易到难的规律,先让学生进入状态,再去加大难度。
会的携做。根据查询相关资料磨棚信息显示,中考数学题计算题占的分值大约70分左右。在中考中,代数约占70分,几何约占瞎隐则50。
中考数学是考生中难度最大的一个科目,掌握好一些中考的必考题型对于中考的发挥至关重要。下文我给大家整理了中考必做的一些经典题型归纳,供参考!
中考必做经典题型包括哪些
一、计算题:
科学计数法、倒数相反数绝对值、简单概率运算、三视图求原图面积、三角形(相似、全等、内角外交关系)、统计(众数、中位数、平均数)、二次函数(顶点、对称轴、表达式)、函数图像关系
二、填空题:
因式分解、二次函数解析式求解、三角形(相似、周长面积计算)、坐标(坐标点运动规律)、直线和反比例函数图像问题
三、解答题:
次方、开方、三角函数、次幂(0次、-1次)计算;
求解不等式组;
分式、多项式化简(整体代入方法求值);
方程组求解;
几何图形中证明三角形边相等;
一次函数与二次函数;
四、解答题
四边形边长、周长、面积求解;
圆相关问题(切割线、圆周角、圆心角);
统计图;
在数轴中求三角形面积;
五、解答题
二次函数(解析式、直线方程);
圆与直线关系;
三角形角度相关计算。
中考压轴题九大题型全归纳
1.线段、角的计算与证明问题
中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。 对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2.图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关或凯辩系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三孙轮角形的各种问题。
3.动态几何
从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4.一元二次方程与二次函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合
5.多种函数交叉综合问题
初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。
6.列方程(组)解应用题
在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,衫缺这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
7.动态几何与函数问题
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。
8.几何图形的归纳、猜想问题
中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是比较重要的。
9.阅读理解问题
如今中考题型越来越活,阅读理解题出现在数学当中就是一个亮点。阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键。
(2013• 德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .
其中正确的序号是①②④(把你认为正确的都填上).
考点: 正方形的性质;全等三角形的判定与性质;等边三角形的性质.
分析: 根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.
解答: 解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
∵在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC﹣BE=CD﹣DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAD≠唯竖高∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF= ,
设正方形的边长为a,
在Rt△ADF中,
a2+(a﹣ )2=4,
解得a= ,
则a2=2+ ,
S正方形ABCD=2+ ,
④说法正确,
故答案为①②④.
点评: 本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.
(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .
考点: 等边三角形的性质;等腰三角形的判定与性质.3481324
分析: 根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△△BDC中,由勾股定理求出BD即可.
解答: 解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,
纤咐∴∠DBC= ∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=1,
∴AD=DC=1,
∵△ABC是等边三角形,
∴BC=AC=1+1=2,BD⊥AC,
在Rt△△BDC中,由勾股定理得:BD= = ,
即DE=BD= ,
故答案为: .
点评: 本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外指尺角性质等知识点的应用,关键是求出DE=BD和求出BD的长.
(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.
考点: 等边三角形的性质;三角形的外角性质;等腰三角形的性质.
分析: 根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.
解答: 解:∵△ABC是等边三角形,
∴∠ACB=60°,∠ACD=120°,
∵CG=CD,
∴∠CDG=30°,∠FDE=150°,
∵DF=DE,
∴∠E=15°.
故答案为:15.
点评: 本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.
(2013年广东湛江)如图,所有正三角形的一边平行于 轴,一顶点在 轴上.从内到外,它们的边长依次为 ,顶点依次用 表示,其中 与 轴、底边 与 、 与 、 均相距一个单位,则顶点 的坐标是 , 的坐标是 .
解析:考查正三角形的相关知识及找规律的能力。由图知, 的纵坐标为:
, ,而 的横坐标为: ,由题意知, 的纵坐标为 , ,容易发现 、 、 、 、 、 这些点在第四象限,横纵坐标互为相反数, 、 、 、 、 、 的下标2、5、7、 、92、 有规律: , 是第31个正三角形(从里往外)的右端点,
(2013福省福州19)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 个单位长度;△AOC与△BOD关于直线对称,则对称轴是 ;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是 度;
(2)连结AD,交OC于点E,求∠AEO的度数.
考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.
专题:计算题.
分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;
(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.
解答:解:(1)∵点A的坐标为(﹣2,0),
∴△AOC沿x轴向右平移2个单位得到△OBD;
∴△AOC与△BOD关于y轴对称;
∵△AOC为等边三角形,
∴∠AOC=∠BOD=60°,
∴∠AOD=120°,
∴△AOC绕原点O顺时针旋转120°得到△DOB.
(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,
∴OA=OD,
∵∠AOC=∠BOD=60°,
∴∠DOC=60°,
即OE为等腰△AOD的顶角的平分线,
∴OE垂直平分AD,
∴∠AEO=90°.
故答案为2;y轴;120.
点评:本题考查了旋转的`性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.
中考数学步骤评分坦清肢标准如下:
如果解题步骤完整且正确,就算不是标准答案也是可以得高分的。如果解题步骤错误,而答案正确,只会扣步骤分,不会全部让世扣除。中考数学计算题过程对答案错通常扣1到2分。解答题一般都是10或12分,通常评分标准把过程分为5到6个部分,每个部分一般1到3分不等,关键步骤分值大一些,最后一步答案1到2分。
考数学计算题分为代数运算和几何图形计算。
对于代数运算,公式用对如完全平方差公式,和平方差写对给2分,三角函数的值写对给1分,代入代数式算对给1分,优入所有的式子算对1分。
对于几何图形的计算,根据图形写出距离相等,角相等,三角形全等或者相似。并说明理由各给1分或者马上说明是什么图形并说明是哪个几何定理各给1分,最后算出结果给1分。
中考数学判卷标准
(1)学生必须认真填写学校、班级、姓名、考号等信息,若有缺项则每项扣
(2)卷面要洁净,不得使用涂改液或修正液,不出现磨团污迹,不破损。整张试卷必须使用同一颜色笔书写。(作图时统正瞎一使用铅笔)。不得使用圆珠笔。卷面分值为20分,根据具体情况酌情扣5,10,15分。