初一动点问题带答案?郭敦顒回动点A从原点O出发向数轴负方向运动,同时动点B从原点O出发向数轴正方向运动,A的速度为a个长度单位/秒,B的速度为b个长度单位/秒,且a,b满足 (1)(1/2)(a-2)²=-3|b-5| (a-2)²≥0,(1/2)(a-2)²≥0;|b-5|≥0,那么,初一动点问题带答案?一起来了解一下吧。
1:DF距离为25、因为是中位线=二分之一。
2:能、给你点思路,把他补成长方形。AC为宽,BC为长、然后射线当直线延长。知道分割2个梯形。
3按上面2步骤的思路的衍生。
4:其实也差不多。
解析:(1)由中位线定理即可求出DF的长;
(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;
(3)①当点P在EF上(2 67≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;
②当点P在FC上(5≤t≤7 67)时,PB+PF=BF就可以得到;
(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.
解答:解:
(1)Rt△ABC中,∠C=90°,AB=50,
∵D,F是AC,BC的中点,
∴DE∥BC,EF∥AC,∴DF= 12AB=25
(2)能.
如图,连接DF,过点F作FH⊥AB于点H,
∵D,F是AC,BC的中点,
∴DE∥BC,EF∥AC,四边形CDEF为矩形,
∴QK过DF的中点O时,QK把矩形CDEF分为面积相等的两部分
(注:可利用全等三角形借助割补法或用中心对称等方法说明),
此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.
故t= 12.5+164=718.
(3)①当点P在EF上(2 67≤t≤5)时,
如图,QB=4t,DE+EP=7t,
由△PQE∽△BCA,得 7t-2050=25-4t30.
∴t=4 2141;
②当点P在FC上(5≤t≤7 67)时,
如图,已知QB=4t,从而PB=5t,
由PF=7t-35,BF=20,得5t=7t-35+20.
解得t=7 12;
(4)如图4,t=1 23;如图5,t=7 3943.
(注:判断PG∥AB可分为以下几种情形:当0<t≤2 67时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7 67当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7 67<t<8中存在PG∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)
菁优网里面有图和整个答案
新闻 网页 贴吧 知道 MP3 图片 视频 百科 文库帮助 | 设置
百度知道 > 教育/科学 > 理工学科 > 数学
关于数学动点问题(答案及解释,好则加分) 离问题结束还有 10 天 16 小时 提问者:滥情v小姐 | 悬赏分:10 | 浏览次数:14次
已知点A对应-300,点C对应200,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,(3/2)QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由。
输入内容已经达到长度限制还能输入 9999 字插入图片删除图片插入地图删除地图插入视频视频地图回答即可得2分经验值,回答被采纳可同步增加经验值和财富值
参考资料:匿名回答提交回答取消
回答 共2条
2012-2-5 13:59 水晶恋诗 | 八级
不变,具体请见百度hi 赞同0| 评论 2012-2-5 14:09 热心网友
假设经过的时间为y,得出PE=10y,QD=5y,进而得出 800+5y/2+5y-400= 15/2y,得出 3QC/2-AM= 3(200+5y)/2- 15/2 y原题得证.
设经过的时间为y,
则PE=10y,QD=5y,
于是PQ点为[0-(-800)]+10y-5y=800+5y,
一半则是 800+5y/2,
所以AM点为: 800+5y/2+5y-400= 15/2y,
又QC=200+5y,
所以 3QC/2-AM= 3(200+5y)/2- 15/2y=300为定值
29.已知:如图,△ABC中,∠ACB>∠ABC,记∠ACB-∠ABC=α,AD为△ABC的角平分线,M为DC上一点,ME与AD所在直线垂直,垂足为E.
(1)用α的代数式表示∠DME的值;
(2)若点M在射线BC上运动(不与点D重合),其它条件不变,∠DME的大小是否随点M位置的变化而变化?请画出图形,给出你的结论,并说明理由.
答案解:(1)解法一:作直线EM交AB于点F,交AC的延长线于点G.(见图1)
∵AD平分∠BAC,
∴∠1=∠2.(1分)
∵ME⊥AD,
∴∠AEF=∠AEG=90°
∴∠3=∠G.
∵∠3=∠B+∠DME,
∴∠ACB=∠G+∠GMC=∠G+∠DME,
∴∠B+∠DME=∠ACB-∠DME.
∴∠DME=1 2 (∠ACB-∠B)=α 2 ;(2分)
解法二:如图2(不添加辅助线),
∵AD平分∠BAC,
∴∠1=∠2.(1分)
∵ME⊥AD,
∴∠DEM=90°,∠ADC+∠DME=90°.
∵∠ADB=∠2+∠C=90°+∠DME,
∴∠DME=∠2+∠C-90°.
∵∠ADC=∠1+∠B,
∴∠1=∠ADC-∠B.
∴∠DME=∠1+∠C-90°=(∠ADC-∠B)+∠C-90°
=∠C-∠B-(90°-∠ADC)=∠C-∠B-∠DME
∴∠DME=1 2 (∠C-∠B)=α 2 ;(2分)
(2)如图3和图4,点M在射线BC上运动(不与点D重合)时,∠DME的大小不变.(点M运动到点B和点C时同理)
证法一:设点M运动到M′,过点M′作M′E′⊥AD于点E′
∵M′E′⊥AD,
∴ME∥M′E′.
∴∠DM′E′=∠DME=α 2 .(4分)
对了,他说我复制的图片非法,我没办法
1、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.
(1)如果OA=OB,那么点B所对应的数是什么?
(2)从点A到达点B所用时间是3秒,求该点的运动速度.
(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)
(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;
(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.
3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;
(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.
(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;
(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;
(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?
5、在数轴上,点A表示的数是-30,点B表示的数是170.
(1)求A、B中点所表示的数.
(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.
(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?
(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数
6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时 ①
相向而行,甲的速度为4个单位/秒。
以上就是初一动点问题带答案的全部内容,2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置; (2)若A、。