当前位置: 首页 > 如何自学 > 初中 > 八年级

八年级数学,八年级物理试卷可打印

  • 八年级
  • 2024-08-07

八年级数学?1.代数式的运算:八年级开始引入代数式的概念,学生需要掌握代数式的加减乘除运算规则,以及如何简化和化简代数式。2.一元一次方程:一元一次方程是八年级数学的重要内容,学生需要学会如何解一元一次方程,包括等式两边同时加上或减去相同的数、等式两边同时乘以或除以相同的数等方法。那么,八年级数学?一起来了解一下吧。

初二下册数学必刷题

知识改变命运,知识是人类进步的阶梯,知识是智慧的源泉,知识可以使人明智,陶冶人们的灵魂。下面我给大家分享一些八年级上册数学第一单元知识点,希望能够帮助大家,欢迎阅读!

八年级上册数学第一单元知识1

全等三角形

1.全等三角形概念能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形的表示全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形有哪些性质

(1)全等三角形的对应边相等、对应角相等。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

4、学习全等三角形应注意以下几个问题:

(1)要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;

(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”

5、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”)。

八年级数学上册电子课本

第一章 全等三角形

一.知识框架

二.知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

八年级数学知识点归纳大全

归纳如下:

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)。

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

八年级数学重点难点题

八年级数学是初中阶段数学学习的重要阶段,难度相对于七年级有所提高。以下是一些八年级数学的难点:

1.代数式的运算:八年级开始引入代数式的概念,学生需要掌握代数式的加减乘除运算规则,以及如何简化和化简代数式。

2.一元一次方程:一元一次方程是八年级数学的重要内容,学生需要学会如何解一元一次方程,包括等式两边同时加上或减去相同的数、等式两边同时乘以或除以相同的数等方法。

3.几何图形的性质:八年级数学中,学生需要学习各种几何图形的性质,如三角形、四边形、圆等。他们需要了解这些图形的边、角、面积、周长等概念,并能够应用这些性质解决问题。

4.数据的收集和分析:八年级数学中,学生需要学会如何收集和整理数据,并进行简单的数据分析。他们需要掌握制作表格、图表等工具,以及如何计算平均数、中位数、众数等统计量。

5.概率与统计:八年级数学中,学生开始接触概率和统计的概念。他们需要了解概率的定义和计算方法,以及如何进行简单的统计分析。

以上只是八年级数学的一些难点,具体的难点还会因学校和教材的不同而有所差异。学生在学习过程中应该注重理解概念,多做练习题,及时解决疑惑,才能更好地掌握八年级数学知识。

初二数学试卷模拟题

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四总结”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

以上就是八年级数学的全部内容,(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

猜你喜欢