高中数学必备公式?弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h。2、那么,高中数学必备公式?一起来了解一下吧。
三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1·X2=c/a 注:韦达定理判别式
b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2px x2=2pyx2=-2py直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h正棱锥侧面积S=1/2c·h'正
棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长柱体体积公式;V=s·h
圆柱体V=pi·r2h正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2pxy^2=-2px x^2=2pyx^2=-2py直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l
弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r锥体体积公式V=1/3·S·H斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s·h圆柱体V=pi·r2h倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/22+4+6+8+10+12+14+…+(2n)=n(n+1)51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3常用导数公式1、y=c(c为常数)y'=02、y=x^ny'=nx^(n-1)3、y=a^xy'=a^xlna4、y=e^xy'=e^x5、y=logaxy'=logae/x6、y=lnxy'=1/x7、y=sinxy'=cosx8、y=cosxy'=-sinx9、y=tanxy'=1/cos^2x10、y=cotxy'=-1/sin^2x11、y=arcsinxy'=1/√1-x^212、y=arccosxy'=-1/√1-x^213、y=arctanxy'=1/1+x^214、y=arccotxy'=-1/1+x^2
高中数学公式如下:
1、cos(A-B) = cosAcosB+sinAsinB。
2、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
3、tan3a = tan a • tan(π/3+a)• tan(π/3-a)。
4、sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。
5、cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]。
1、两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a/2、半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))/3、和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB/
4、某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
5、圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
6、抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
7、直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h
8、正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h
9、圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2
高中必背的88个数学公式如下:
1、几何公式:
三角形面积公式:\[S=\frac{1}{2}bh\]、直角三角形勾股定理:\[a^2+b^2=c^2\]、任意三角形余弦定理:\[c^2=a^2+b^2-2ab\cosC\]、任意三角形正弦定理:\[\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sinC}\]。
圆的周长公式:\[C=2\pir\]、圆的面积公式:\[S=\pir^2\]、椭圆的面积公式:\[S=\piab\]、平行四边形面积公式:\[S=bh\]、梯形面积公式:\[S=\frac{1}{2}(a+b)h\]。
2、代数与函数公式:
两点之间距离公式:\[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]、二次方程求根公式:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]、因式分解公式:\[a^2-b^2=(a+b)(a-b)\]、平方差公式:\[a^2-b^2=(a+b)(a-b)\]。
二次平方差公式:\[a^2+2ab+b^2=(a+b)^2\]、二次平方和公式:\[a^2-2ab+b^2=(a-b)^2\]、余弦和与差公式:\[\cos(A\pmB)=\cosA\cosB\mp\sinA\sinB\]、正弦和与差公式:\[\sin(A\pmB)=\sinA\cosB\pm\cosA\sinB\]。
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin^2(α)+cos^2(α)=1
tan α *cot α=1
一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
坡度公式
我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作
a(叫做坡角),那么 i=h/l=tan a.
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边
余弦:cos α=∠α的邻边/∠α的斜边
正切:tan α=∠α的对边/∠α的邻边
余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦
sin2A=2sinA·cosA
余弦
1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin(3a)
=sin(a+2a)
=sin2acosa+cos2asina
=2sina(1-sin²a)+(1-2sin²a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-cos^a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)^2]
=4cosa(cos²a-cos²30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。
以上就是高中数学必备公式的全部内容,1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab 4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。