初中数学知识框架?初中数学主要分为以下几大模块:数的基本运算、代数与方程、几何与图形、函数与图像、统计与概率。1、 数的基本运算:包括整数、分数、小数的四则运算,以及计算规则和运算性质。自然数的性质与运算,包括加法、减法、那么,初中数学知识框架?一起来了解一下吧。
以下内容纯手打,望采纳,谢谢
初中数学分为两部分:几何、代数
一、几何
线、角、多边形(三角形、四边形等)、圆、全等、相似
二、代数实数
数与式:
实数:有理数和无理数的统称。
整式:单项式和多项式的统称。
分式:整式A除以整式B,可以表示成A/B的形式.如果除式B中含有字母,那么称为分式。
二次根式:一般地,形如√a的代数式叫做二次根式。
方程:
一元一次方程:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
二元一次方程:二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。
函数:
一次函数:一般形如y=kx+b(k,b是常数,k≠0)
二次函数:一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
反比例函数:一般的,如果两个变量x,y之间的关系可以表示成(k为常数,k≠0,x≠0)
望采纳,谢谢
初中数学大概可分为四大模块:
一、数与代数
⑴数与式
①实数的加减乘除与乘方开方
②整式的加减乘除与因式分解
③分式的加减乘除乘方开方
⑵方程与不等式
⒈方程与方程组
①一元一次方程
②二元一次方程(组)
③一元二次方程
⒉不等式与不等式组
①一元一次不等式(组)
⑶函数
①一次函数
②二次函数
③反比例函数
④锐角三角函数
二、平面几何
⑴平面图形
①点线面
②角
③相交线与平行线
④三角形(等腰三角形、等边三角形、全等三角形、相似三角形、直角三角形)
⑤四边形(平行四边形、长方形、菱形、正方形,梯形)
⑥圆
⑦尺规作图
⑧三视图
⑵图形变换
①平移
②对称(轴对称、中心对称)
③旋转
④位似
⑶平面直角坐标系(数形结合)
三、统计与概率
⑴统计
①数据的收集与描述
②数据的分析与比较
③统计估计
⑵概率
①频数与频率
②概率的概念
③概率的计算
四、综合与实践
分为三大板块:一、数与代数;二、图形与几何;三、数据和统计。
初一到初三共六册:
人教版初中数学教科书目录
七年级上册
第一章有理数
1.1 正数和负数
1.2 有理数(数轴|相反数|绝对值)
1.3 有理数的加减法
1.4 有理数的乘除法
1.5 有理数的乘方(科学计数法)
第二章整式的加减
2.1 整式
2.2 整式的加减
第三章一元一次方程★
3.1 从算式到方程
3.2 解一元一次方程(一)合并同类项与移项
3.3 解一元一次方程(二)去括号与去分母
3.4 实际问题与一元一次方程
第四章图形认识初步
4.1 多姿多彩的图形
4.2 直线、射线、线段
4.3 角
4.4 设计制作长方体形状的包装纸盒
七年级下册
第五章相交线与平行线
5.1 相交线(垂线|同位角|内错角|同旁内角)
5.2 平行线及其判定(邻补角)
5.3 平行线的性质(命题|定理)
5.4 平移
第六章平面直角坐标系
6.1 平面直角坐标系
6.2 坐标方法的简单应用
第七章三角形★
7.1 三角形有关的线段(高|中线|角平分线)
7.2 与三角形有关的角(稳定性|外角)
7.3 多边形及其内角和
7.4 课题学习 镶嵌
第八章二元一次方程组★
8.1 二元一次方程组
8.2 消元——二元一次方程组的解法
8.3 实际问题与二元一次方程组
*8.4 三元一次方程组解法举例
第九章不等式与不等式组
9.1 不等式
9.2 实际问题与一元一次不等式
9.3 一元一次不等式组
第十章数据的收集、整理与描述
10.1 统计调查
10.2 直方图
八年级上册
第十一章全等三角形★
11.1 全等三角形
11.2 三角形全等的判定
11.3 角的平分线的性质
第十二章轴对称
12.1 轴对称
12.2 作轴对称图形
12.3 等腰三角形
第十三章实数
13.1 平方根
13.2 立方根
13.3 实数
第十四章一次函数★
14.1 变量与函数
14.2 一次函数
14.3 用函数观点看方程(组)与不等式
第十五章整式的乘除与因式分解
15.1 整式的乘法
15.2 乘法公式
15.3 整式的除法
八年级下册
第十六章分式
16.1 分式
16.2 分式的运算
16.3 分式方程
第十七章反比例函数★
17.1 反比例函数
17.2 实际问题与反比例函数
第十八章勾股定理★
18.1 勾股定理
18.2 勾股定理的逆定理
第十九章四边形★
19.1 平行四边形(性质|判定|中位线定理)
19.2 特殊的平行四边形(矩形|菱形|正方形)
19.3 梯形
19.4 课题学习 重心
第二十章数据的分析
20.1 数据的代表
20.2 数据的波动
九年级上册
第二十一章 二次根式
21.1 二次根式
21.2 二次根式的乘除
21.3 二次根式的加减
第二十二章 一元二次方程★
22.1 一元二次方程
22.2 降次——解一元二次方程
22.3 实际问题与一元二次方程
第二十三章 旋转
23.1 图形的旋转
23.2 中心对称
第二十四章 圆★
24.1 圆
24.2 点、直线、圆和圆的位置关系
24.3 正多边形和圆
24.4 弧长和扇形面积
第二十五章 概率初步
25.1 随机事件与概率
25.2 用列举法求概率
25.3 用频率估计概率
九年级下册
第二十六章二次函数★
26.1 二次函数及其图像
26.2 用函数观点看一元二次方程
26.3 实际问题与二次函数
第二十七章相似★
27.1图形的相似
27.2相似三角形
27.3位似
第二十八章锐角三角函数
28.1锐角三角函数
28.2解直角三角形
第二十九章投影与视图
29.1投影
29.2三视图
学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。下面是我为大家精心整理的关于初二数学知识点,希望对大家有所帮助。
轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
⑸等边三角形:三条边都相等的三角形叫做等边三角形.
2.基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.
②对称的图形都全等.
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
⑶关于坐标轴对称的点的坐标性质
①点P(x,y)关于x轴对称的点的坐标为P'(x,y).
②点P(x,y)关于y轴对称的点的坐标为P"(x,y).
⑷等腰三角形的性质:
①等腰三角形两腰相等.
②等腰三角形两底角相等(等边对等角).
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.
④等腰三角形是轴对称图形,对称轴是三线合一(1条).
⑸等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
3.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形.
②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.
4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.
一次函数
(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。
初中数学大概可分为四大模块:
一、数与代数
⑴数与式
①实数的加减乘除与乘方开方
②整式的加减乘除与因式分解
③分式的加减乘除乘方开方
⑵方程与不等式
⒈方程与方程组
①一元一次方程
②二元一次方程(组)
③一元二次方程
⒉不等式与不等式组
①一元一次不等式(组)
⑶函数
①一次函数
②二次函数
③反比例函数
④锐角三角函数
二、平面几何
⑴平面图形
①点线面
②角
③相交线与平行线
④三角形(等腰三角形、等边三角形、全等三角形、相似三角形、直角三角形)
⑤四边形(平行四边形、长方形、菱形、正方形,梯形)
⑥圆
⑦尺规作图
⑧三视图
⑵图形变换
①平移
②对称(轴对称、中心对称)
③旋转
④位似
⑶平面直角坐标系(数形结合)
三、统计与概率
⑴统计
①数据的收集与描述
②数据的分析与比较
③统计估计
⑵概率
①频数与频率
②概率的概念
③概率的计算
四、综合与实践
以上就是初中数学知识框架的全部内容,三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。 第四章 二元一次方程组 一.知识结构图 二、。