目录超级难度导数压轴题 高中导数教辅推荐 高中数学泰勒公式 高中数学导数教学免费 基本导数公式16个
在湘教版高中数学2-2就有了,基本初等函数导数公式主竖信困要有以下
y=f(x)=c (c为常数),则f'(x)=0
f(x)=x^n(n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)
f(x)=sinxf'(x)=cosx
f(x)=cosxf'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanxf'(x)=1/cos^2 x
f(x)=cotxf'(x)=- 1/余念sin^2 x
导数运算法则如下
(f(x)+/-g(x))'=f'(x)+/- g'(x)
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
(g(x)/f(x))'=(f(x)'g(x)-g(x)f'坦州(x))/(f(x))^2
函数导数公式
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是穗橘蠢一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把猜陪这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x
y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/伍伍x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx
y'=1/x。
这时可以进行y=x^n
y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx&8226;(nlnx)'=x^n&8226;n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
参考资料:
http://blog.163.com/kumeir____2006@126/blog/static/1927743220085111102993
高中数学导数公式具体为:
1、原函数:y=c(c为常数)
导数: y'=0
2、原函数:y=x^n毁腔段
导数:y'=nx^(n-1)
3、原函数:y=tanx
导数: y'=1/cos^2x
4、原函数:y=cotx
导数:y'=-1/sin^2x
5、原函数:y=sinx
导数:y'=cosx
6、原函数:y=cosx
导数:y'=-sinx
7、原函数:y=a^x
导数:y'=a^xlna
8、原函数:y=e^x
导数:y'=e^x
9、原函数:y=logax
导数:y'=logae/x
10、原函数:y=lnx
导数:y'=1/x
扩展资料:
高中数学导数学习方法
1、多看求导公式,把几个常用求圆岩导公式记清楚,遇到求导的题目,灵活运用公式。
2、在解纤誉题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。
3、一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。
根据图像就可以求出你想要的东西,比如最大值或最小值等。
4、特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。
参考资料来源:-导数
(2)几种常见函数的导数公式:
①模或汪 C'=0(C为常团升数函数);
② (x^n)'= nx^(n-1) (n∈Q);
③ (sinx)' = cosx;
④ (cosx)' = - sinx;
⑤ (e^x)' = e^x;
⑥ (a^x)' = a^xlna (ln为自然对数)
⑦旦仔 (Inx)' = 1/x(ln为自然对数)
⑧ (logax)' =(xlna)^(-1),(a>0且a不等于1)
高中数学导数公式
1、简闷原函数:y=c(c为常数)
导数: y'=0
2、原函数:y=x^n
导数:y'=nx^(n-1)
3、原函数:y=tanx
导数: y'=1/cos^2x
4、原函数:y=cotx
导数:y'=-1/sin^2x
5、原函数:y=sinx
导数:y'=cosx
6、原函数:y=cosx
导数: y'=-sinx
7、原函数:y=a^x
导数:y'=a^xlna
8、原函数:y=e^x
导数: y'=e^x
9、原函数:y=logax
导数:y'=logae/x
10、原函数:y=lnx
导数:y'=1/x
求导公式大全整理
y=f(x)=c (c为常数),则f'(x)=0
f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=tanx f'(x)=sec^2x
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanx f'(x)=1/cos^2 x
f(x)=cotx f'(x)=- 1/sin^2 x
f(x)=acrsin(x) f'(x)=1/√(1-x^2)
f(x)=acrcos(x) f'(x)=-1/√(1-x^2)
f(x)=acrtan(x) f'(x)=-1/(1 x^2)
导数与函数的性质
单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:如果函数的导函数在某一区间内恒大于零(或恒小于零),改高那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
凹凸性
可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。如果二阶拦歼弯导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。