目录Python有哪些数据可视化方法? 学会使用Boken实现数据可视化(一) java课程培训机构分享数据可视化图表类型分析 Python数据可视化--在Python中调用ggplot进行绘图 一图胜千言:数据可视化不完全总结(一)
当下学大数据可视化的朋友不在少数,不少明智的朋友都选择参衫亏加专业的大数据培训,来快速提升自己的能力水平。可是也有一些朋友担心大数据可视化学不会怎么办,这样的问题。IT培训http://www.kmbdqn.cn/就具体讲讲,大数据可视化学不会怎么办,这个话题,来解答大家的疑问。
1:我们先来讲讲大数据可视化要学什么东西,让自己的心中有一个大概的底。想要成为合格的大数据工程师,就需要具有良好的数学基础,了解常用机器学习算法、具有数据挖掘背景、建模经验;熟练掌握JAVA或Python,熟悉Spark、MLlib及Hadoop生态圈其他组件原理和使用;熟悉Scala,R,SQL,Shell,熟悉Linux操作使用。
2:出开以上的技能是大数据可视化工程师必须要掌握的之外,还需要掌握hadoop、hbase、kafka、spark等分布式数据存储和分布式计算原理;熟悉大数据基础架构,对流式、并行计算、实时流计算等技术有较深的理解;熟悉SparkStreaming和SparkSQL,对Spark原理及底层技术有深入了解等等。
3:以上技能的深度与广度都是存在的,想要学好也是需要花费一些前滚心思的。不过大家也不用很担心,掌握好这门技术也不慧塌余难,只要你采用科学的学习方式就好。
数据可视化枣灶是python最常见的应用领域之一,数据可视化是借助图形化的手段将一组数据以图形的形式表达出来,并利用数据分析和开发发现其中未知信息的数据处理过程。
在学术界有一句话广为流传,A picture worths thousand words,就是一图值千言。在课堂上,我经常举的例子就是大家在刷朋友圈的时候如果看到有人转发一篇题目很吸引人的文章时,我们都会点击进去,可能前几段话会很认真地看,文章很长的时候后面就会一目十行,失去阅读的兴趣。
所以将数据、表格和文字等内容用图表的形式表达出来,既能提高读者阅读的兴趣,还能直观表达想要表达的内容。
python可视化库有很多,下面列举几个最常用的介绍一下。
matplotlib
它是python众多数据可视化库的鼻祖,也是最基础的底层数据可视化第三方库,语言风格简单、易懂,特别适合初学者入门学习。
seaborn
Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情搏猜况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。
pyecharts
pyecharts是一款将python与echarts结合的强大的数据可视化,生成的图表精巧,交互性良好,可轻松集成至 Flask,Sanic,Django 等主流 Web 框架,得到众多开发者的认可。
bokeh
bokeh是一个面向web浏览器凳银扮的交互式可视化库,它提供了多功能图形的优雅、简洁的构造,并在大型数据集或流式数据集上提供高性能的交互性。
python这些可视化库可以便捷、高效地生成丰富多彩的图表,下面列举一些常见的图表。
柱形图
条形图
坡度图
南丁格尔玫瑰图
雷达图
词云图
散点图
等高线图
瀑布图
相关系数图
散点曲线图
直方图
箱形图
核密度估计图
折线图
面积图
日历图
饼图
圆环图
马赛克图
华夫饼图
还有地理空间型等其它图表,就不一一列举了,下节开始我们先学习matplotlib这个最常用的可视化库。
课程简介
本节为 Python 金融数据分析基础课程,将重点介绍使用 matplotlib 制作基本图表的方法,此外,也对较特别的金融和和常用图表进行了说明。建议初学者认真学习本节内容,已经掌握 Python 基本作图的读者可以直接跳转至金融图表部分。
学习目标
用 matplotlib 做基本的 2D 图表,主要为点线图、散点图、柱状图
用 matplotlib 做金融图表,主要为蜡状图、箱型图
用 matplotlib 做基本神芹的 3D 图表,主要为 3D 曲面图和 3D 散点图
一、平面图表
1、生成一维数唤瞎盯据集
一、需求分析
需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可唤告能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。
二、建设数据仓库/数据集市的模型
数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。
三、数据抽取、清洗、转换、加载(ETL)
数据抽取是指将数据仓库/集市需要的数据从各个业务中抽离出来,因为每个业务的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽悄链橡取流程都需要使用接口将元数据传送到清洗和转换阶段。
数据清洗的目的是保证抽取的原数据的质量符合数据仓库/集市的要求并保持数据的一致性。数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库/集市模型中各个实体之间的关系将数据加载到目标表中。
四、建立可视化场景
建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。
关于大数据可视化分析步骤有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章启旁可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
最近整理了之前的资料,又重新收集了一点新的材料,找到了现在最多人推荐,最好的可视化参考书。
分别是这几本
The Visual Display of Quantitative Information, Edward Turfte
最简单的图形与最复杂的信息
数据可视化之美,Beauty Visualization,Juliesteele
鲜活的数据:数据可视化指南,Nanthan Yau
数据之美,Data Points: Visualization that means something,Nanthan
Yau
数据可视化,陈为
太多,怎么看?
在开始很长的一本一本介绍之前,先说最重要的部分,推荐学习过程:
完全不了困虚大解可视化,对于数据可视化没有经验:先推荐读从《最简单的图形与最复杂的信息》,再读《鲜活的数据》,用《数据可视化之美》当作课外书
对可视化有兴趣,有过简单数据分析、做报表等的可视化初级学者:推荐读《鲜活的数据》以及《数据之美》;喜欢练练英语的把《The Visual Display of Quantitative Information》作为课外书,如果不喜欢的就看看《数据可视化之美》
可视化有经验,对于数据誉源分析、可视化基本原理有过性了汪竖解,也肯定有过一定学习,建议直接上手陈为的《数据可视化》;数据可视化之美,以及《The Visual Display of Quantitative Information》作为课外书,其他也可以顺便了解。