当前位置: 首页 > 上海自学网 > 高中 > 高考

高考数学教案,高三数学优秀教案

  • 高考
  • 2023-06-21

高考数学教案?1.高三数学上册教案范例 【教学目标】 1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 2.能根据几何结构特征对空间物体进行分类。 3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。那么,高考数学教案?一起来了解一下吧。

高中数学优秀教案50篇

1.高三数学教案设计

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为局谈袭丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课桐兄标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

高考数学选修题选什么

1.高三数学上册教案范例

一、复习内容

平面向量的概念及运算法则

二、复习重点

向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

昌磨三、具体教学过程

1.学生准备课前预习回家做作业。其具体步骤是:相应知识的梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。

2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对改租有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

韦东奕谈2022高考数学题

1.高三数学上册教案

一、教学目标

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

二、教学重点、难点:

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

三、教学过程

(一)导入新课

回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;

⑵零角的终边与始边重合,如果α是零角α=0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

请说出角α、β、γ各是多少度?

2、象限角的概念:

定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

清华最难奥数题

教案【一】

教学准备

教学目标

进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

教学重难点

教学重点:熟练运用定理.

教学难点:应用正、余弦定理进行边角关系的相互转化.

教学过程

一、复习准备:

1.写出正弦定理、余弦定理及推论等公式.

2.讨论各公式所求解的三角形类型.

二、讲授新课:

1.教学三角形的解的讨论:

①出示例1:在△ABC中,已知下列条件,解三角形.

分两组练习→讨论:解的个数情况为何会发生变化?

②用如下图示分析解的情况.(A为锐角时)

②练习:在△ABC中,已知下列条件,判断三角形的解的情况.

2.教学正弦定理与余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断

③出示例4:已知△ABC中,,试判断△ABC的形状.

分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

三、巩固练习:

3.作业:教材P11B组1、2题.

教案【二】

一)教材分析

(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力。

高中比较难的数学题

教师们通常需要教案来辅助教学,那么教案应该怎么写呢?下面是由我为大家整理的“高中数学教案简案(精选5篇)”,仅供参考,欢迎大家阅读。

篇一:高中数学教案简案精选

教学目标:

1、结合实际问题情景,理解分层抽样的必要性和重要性;

2、学会用分层抽样的方法从总体中抽取样本;

3、并对简单随机抽样、抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:

通过实例理解分层抽样的方法。

教学难点:

分层抽样的步骤。

教学过程:

一、问题情境

1、复习简单随机抽样、抽样的概念、特征以及适用范围。

2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是。

以上就是高考数学教案的全部内容,1.高三数学上册教案范例 一、复习内容 平面向量的概念及运算法则 二、复习重点 向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。 三、具体教学过程 1.学生准备课前预习回家做作业。

猜你喜欢