目录光学常用公式 高中物理光电效应笔记 高中物理光学部分 高二物理光学公式 光压公式高中
什么光学告扒公式啊. 这是明友告双缝干涉图像吧?X是间隙 入是波长 L是两激明板间距 D是缝间隙的长度吧
自己回忆的.
高中物理知识点总结光_高中物理光学知识点经典总结
光的反射几何光学光的折射 全反射光的色散光的干涉 光波动光学 光的衍射光的偏振 学光的本性 电磁波入射角等于反射角光路是可逆的光的频率(颜色)由光源决定,与介质无关n ? sini ? C ? sin 90o ? ?空 sin ? v介 sinC ?介光从一种介质进入另一种由水面上看水下光源时,视深 d'? d / n介质,频率不变由水面下看水上物体时,视高 d' ? nd1条件:1.光密到光疏;sin c = (C 为临界角) n2.入射角等于或大于临界角①光导纤维①② ②全反射棱镜光密三棱镜:光线向底面偏折 光疏三棱镜:光线向顶角偏折双缝干涉?x ? l ? d亮条纹δ =kλ 暗条纹δ = ? (2n ? 1)2薄膜干涉光的色散颜色 n f λV C 临 E 光子红小小大大大小 紫大大小小小大肥皂膜、空气膜、油膜、牛顿环、 光学器件增透膜、冷光灯单缝衍射X 射线结构示意图,E 为灯丝电源。在渣姿 K、A小孔衍射两电极间加上几万伏的直流高压,使射小球衍射线管发出 X 射线光是一种横波无线电波红外线 可见光 紫外线X 射线? 射线振 荡 电 路 中 自 由原子外层电子受到激发原 子 内 层 电 子 受 激原子核受激发产生电子周期性运动 产生发产生的麦克斯韦提出光在本质上是一种电磁波赫兹用实验证明了光的电磁说的正确性 V=λ f光的波粒 二象性物质波 概率波 光谱粒子性E = hv波动性光电效应EK ? hv -W种类康普顿效应 石墨中的电子对 x 射线的散射现象原子跃迁时辐射或吸收的光子能量hv = Em - En干涉、衍射、多普勒效应、偏振都是波的特有现象红外线 紫外线 X 射线产生主要性质一切物体热效应高温物体化学效应阴极射线射到固体表面 强穿透性应用举例遥感、遥控、加热 荧光、杀菌 透视、金属探伤德布罗意波 任何运动物体都有与之对应的波长λ物质波:λ =h/p电子衍射现象光子在空间位置出现的概率以及运动的微观粒子在某点附近出现的概率由波动规律确定 光波和物质波是概率波连续光谱:炽热固液高压气体发光 发射光谱[明线光谱]:稀薄气体或金属蒸气吸收光谱:光通过物质被吸收一部分形成的
高中物理知识点总结光_高中物理光学知识点总结
一、知识结构光的微粒说 (牛顿)光的波动性 (惠更斯)光的电磁说认 (麦克斯韦)光 的 本 性识 深 化 过 程光子说 (爱因斯坦)第十一单元 光的性质能解释:光的直线传播、光的反射等。
困 难:光的独立传播、光躲到两种媒质的界面上既有反射,又有折 射。双缝干涉光的干涉薄膜干涉光的衍射电磁场理论 光的电磁说光电效应 及其规律光子说电磁波谱 无线电波、红外线、可见 光、紫外线、伦琴射线、r 射线,由低 频到高频,构成了范围非常广阔的电 磁波谱。光在空间传播不是连续的,而是一份一份的,每 一份叫做一个光子。光子的能量 E=hv。h=6.63×焦·秒,称普朗克常量。波粒二象性 目前的结论 二、学习要求光既有波动性,又有粒子性,故认为光具有波粒 二象性(一切微观粒子都有波粒二象性)。大量光子、长波长: 容易表现出波动 性。少量光子、短波长: 容易表现出粒子 性。1、知道有关光的本性的认识发展过程:知道牛顿代表的微粒、惠更斯的波动说一直到光的波粒二象性这一人类认识光的本性的历程,懂得人类对客观世界的认识是不断发展不断深化的。2、知道光的干涉:知道光的干涉现象及其产生的条件;知道双缝干涉的装置、干涉原理及干涉条纹的宽度特征,会用肥扒梁嫌皂膜观察薄膜干涉现象。知道光的衍射:知道光的衍射现象及观察明显衍射现象的条件,知道单缝衍射的条纹与双缝干涉条纹之间的特征区别。3、知道电磁场,电磁波:知道变化的电场会产生磁场,变化的磁场会产生电场,变化的磁场与变化的磁场交替产生形成电磁场;知道电磁波是变化的电场和磁场——即电磁场在空间的传播;知道电磁波对人类文明进步的作用,知道电磁波有时会对人类生存环境造成不利影响;从电磁波的广泛应用认识科学理论转化为技术应用是一个创新过程,增强理论联系实际的自觉性。知道光的电磁说:知道光的电磁说及其建立过程,知道光是一种电磁波。4、知道电磁波波谱及其应用:知道电磁波波谱,知道无线电波、红外线、春手紫外线、X 射线及?射线的特征及其主要应用。5、知道光电效应和光子说:知道光电效应现象及其基本规律,知道光子说,知道光子的能量与光学知识点其频率成正比;知道光电效应在技术中的一些应用6、知道光的波粒二象性:知道一切微观粒子都具有波粒二象性,知道大量光子容易表现出粒子性,而少量光子容易表现为粒子性。1光的直线传播.光的反射二、光的直线传播1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3×108m/s; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v 3.玻璃砖所谓玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下表面射出时,其特点 是: ⑴射出光线和入射光线平行; ⑵各种色光在第一次入射后就发生色散; ⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关; ⑷可利用玻璃砖测定玻璃的折射率。 4.光导纤维 全反射的一个重要应用就是用于光导纤维(简称光纤)。光纤有内、外两层材料,其中内层是光密介质,外层是光 疏介质。光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。这 样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。 五、各光学元件对光路的控制特征 (1)光束经平面镜反射后,其会聚(或发散)的程度将不发生改变。这正是反射定律中“反射角等于入射角”及平 面镜的反射面是“平面”所共同决定的。 (2)光束射向三棱镜,经前、后表面两次折射后,其传播光路变化的特征是:向着底边偏折,若光束由复色光组成, 由于不同色光偏折的程度不同,将发生所谓的色散现象。 (3)光束射向前、后表面平行的透明玻璃砖,经前、后表面两次折射后,其传播光路变化的特征是;传播方向不变, 只产生一个侧移。 (4)光束射向透镜,经前、后表面两次折射后,其传播光路变化的特征是:凸透镜使光束会聚,凹透镜使光束发散。 六、各光学镜的成像特征物点发出的发散光束照射到镜面上并经反射或折射后,如会聚于一点,则该点即为物点经镜面所成的实像点; 如发散,则其反向延长后的会聚点即为物点经镜面所成的虚像点。因此,判断某光学镜是否能成实(虚)像,关 键看发散光束经该光学镜的反射或折射后是否能变为会聚光束(可能仍为发散光束)。 (1)平面镜的反射不能改变物点发出的发散光束的发散程度,所以只能在异侧成等等大的、正立的虚像。 (2)凹透镜的折射只能使物点发出的发散光束的发散程度提高,所以只能在同侧成缩小的、正立的虚像。 (3)凸透镜折射既能使物点发出的发散光束仍然发散,又能使物点发出发散光束变为聚光束,所以它既能成虚像, 又能成实像。 七、几何光学中的光路问题几何光学是借用“几何”知识来研究光的传播问题的,而光的传播路线又是由光的基本传播规律来确定。所 以,对于几何光学问题,只要能够画出光路图,剩下的就只是“几何问题”了。而几何光学中的光路通常有如下 两类: (1)“成像光路”——一般来说画光路应依据光的传播规律,但对成像光路来说,特别是对薄透镜的成像光路来说,则是依据三条特殊光线来完成的。这三条特殊光线通常是指:平行于主轴的光线经透镜后必过焦点;过 焦点的光线经透镜后必平行于主轴;过光心的光线经透镜后传播方向不变。 (2)“视场光路”——即用光路来确定观察范围。这类光路一般要求画出所谓的“边缘光线”,而一般的“边缘光 线”往往又要借助于物点与像点的一一对应关系来帮助确定。3一、光的干涉光的波动性(光的本性)一、光的干涉现象两列波在相遇的叠加区域,某些区域使得“振动”加强,出现亮条纹;某些区域使得振动减弱,出现暗条纹。振动加强和振动减弱的区域相互间隔,出现明暗相间条纹的现象。这种现象叫光的干涉现象。二、产生稳定干涉的条件: 两列波频率相同,振动步调一致(振动方向相同),相差恒定。两个振动情况总是相同的波源,即相干波源1.产生相干光源的方法(必须保证 ? 相同)。⑴利用激光 (因为激光发出的是单色性极好的光); ⑵分光法(一分为二):将一.束.光.分.为.两.束.频率和振动情况完全相同的光。(这样两束光都来源于同一个光源,频率 必然相等)下面 4 个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图点(或缝)光源分割法:杨氏双缝(双孔)干涉实验;利用反射得到相干光源:薄膜干涉a利用折射得到相干光源:cS1 SSdS/bS2结论:由同一光源发出的光经两狭缝后形成两列光波叠加产生.①当这两列光波到达某点的路程差为波长的整数倍时,即δ =kλ ,该处的光互相加强,出现亮条 纹;②当到达某点的路程差为半波长奇数倍时,既δ?=(2n ?1) ,该点光互相消弱,出现暗条纹;·2③条纹间距与单色光波长成正比. ?x ? l ? (∝λ ),·d所以用单色光作双缝干涉实验时,屏的中央是亮纹,两边对称地排列明暗相同且间距相等的条纹用白光作双缝干涉实验时,屏的中央是白色亮纹,两边对称地排列彩色条纹,离中央白色亮纹最近的是紫色亮纹。原因:不同色光产生的条纹间距不同,出现各色条纹交错现象。所以出现彩色条纹。将其中一条缝遮住:将出现明暗相间的亮度不同且不等距的衍射条纹3.薄膜干涉现象:光照到薄膜上,由薄膜前、后表面反射的两列光波叠加而成.劈形薄膜干涉可产生平行相间条 纹,两列反射波的路程差 Δδ ,等于薄膜厚度 d 的两倍,即 Δδ =2d。 由于膜上各处厚度不同,故各处两列反射波的路 程差不等。 若:Δδ =2d=nλ(n=1,2…)则出现明纹。 Δδ =2d=(2n-1)λ/2(n=1,2…)则出现暗纹。应注意:干涉条纹出现在被照射面(即前表面)。后表面是光的折射所造成的色散现象。单色光明暗相间条纹,彩 色光出现彩色条纹。薄膜干涉应用:肥皂膜干涉、两片玻璃间的空气膜干涉、浮在水面上的油膜干涉、牛顿环、蝴蝶翅膀的颜色等。光照到薄膜上,由膜的前后表面反射的两列光叠加。看到膜上出现明暗相间的条纹。(1)透镜增透膜(氟化镁):透镜增透膜的厚度应是透射光在薄膜中波长的 1/4 倍。使薄膜前后两面的反射光的光程 差为半个波长,(ΔT=2d=?λ,得 d=?λ),故反射光叠加后减弱。大大减少了光的反射损失,增强了透射光的强度, 这种薄膜叫增透膜。光谱中央部分的绿光对人的视觉最敏感,通过时完全抵消,边缘的红、紫光没有显著削弱。所有增透膜的光学镜头呈现淡紫色。从能量的角度分析 E 入=E 反+E 透+E 吸。 在介质膜吸收能量不变的前提下,若 E 反=0,则 E 透最大。增强透射光的强 度。(2)“用干涉法检查平面”:如图所示,两板之间形成一层空气膜,用单色光从上向下照射,如果被检测平面是光 滑的,得到的干涉图样必是等间距的。 如果某处凸起来,则对应明纹(或暗纹)提前出现,如图甲所示;如果某处 凹下,则对应条纹延后出现,如图乙所示。 (注:“提前”与“延后”不是指在时间上,而是指由左向右的顺序位置 上。 ) 注意:由于发光物质的特殊性,任何独立的两列光叠加均不能产生干涉现象。只有采用特殊方法从同一光源分离出的两列光叠加才能产生干涉现象。44.光的波长、波速和频率的关系 v=λ f。光在不同介质中传播时,其频率 f 不变,其波长λ 与光在介质中的波速v 成正比.色光的颜色由频率决定,频率不变则色光的颜色也不变。二、光的衍射。1.光的衍射现象是光离开直线路径而绕到障碍物阴影里的现象.单缝衍射:中央明而亮的条纹,两侧对称排列强度减弱,间距变窄的条纹。圆孔衍射:明暗相间不等距的圆环,(与牛顿环有区别的)2.泊松亮斑:当光照到不透光的极小圆板上时,在圆板的阴影中心出现的亮斑。当形成泊松亮斑时,圆板阴影的边缘是模糊的,在阴影外还有不等间距的明暗相间的圆环。3.各种不同形状的障碍物都能使光发生衍射。至使轮廓模糊不清,4.产生明显衍射的条件:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于 0.5mm 时,有明显衍射现象)Δ d≤300λ 当Δ d=0.1mm=1300λ 时看到的衍射现象就很明显了。小结:光的干涉条纹和衍射条纹都是光波叠加的结果,但存在明显的区别:单色光的衍射条纹与干涉条纹都是明暗相间分布,但衍射条纹中间亮纹最宽,两侧条纹逐渐变窄变暗,干涉条纹则是等间距,明暗亮度相同。 白光的衍射条纹与干涉条纹都是彩色的。意义:①干涉和衍射现象是波的特征:证明光具有波动性。λ 大,干涉和衍射现明显,越容易观察到现象。②衍射现象表明光沿直线传播只是近似规律,当光波长比障碍物小得多和情况下(条件)光才可以看作直线传播。(反之)③在发生明显衍射的条件下,当窄缝变窄时,亮斑的范围变大,条纹间距离变大,而亮度变暗。光的直进是几何光学的基础,光的衍射现象并没有完全否认光的直进,而是指出光的传播规律受一定条件制约的,? 任何物理规律都受一定条件限制。(光学显微镜能放光振动垂大 2000 倍,无法再放大,再放大衍射现象明显了。)直于纸面(以下新教材适用)三.光的偏振横波只沿某个特定方向振动,这种现象叫做波的偏振。只有横波才有偏振现象。根据波是否具有偏振现象来判断波是否横波,实验表明,光具有偏振现象,说明光光振动波是横波。在纸面(1)自然光。太阳、电灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫自然光。自然光通过偏振片后成形偏振光。(2)偏振光。自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是 90°,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。我们通常看到的绝大多数光都是偏振光。除了直接从光源发出的光外。偏振片(起偏器)由特定的材料制成,它上面有一个特殊方向(透振方向)只有振动方向和透振方向平行的光波才能通过偏振片。(3)只有横波才有偏振现象。光的偏振也证明了光是一种波,而且是横波。各种电磁波中电场 E 的方向、磁场 B的方向和电磁波的传播方向之间,两两互相垂直。(4)光波的感光作用和生理作用主要是由电场强度 E 引起的,因此将 E 的振动称为光振动。(5)应用:立体电影、照相机的镜头、消除车灯的眩光等。四、麦克斯韦光的电磁说.1、光的干涉与衍射充分地表明光是一种波,光的偏振现象又进一步表明光是横波。提出光电磁说的背景:麦克斯韦对电磁理论的研究预言了电磁波的存在,并得到电磁波传播速度的理论值 3.11×108m/s,这和当时测出的光速 3.15×108m/s 非常接近,在此基础上⑴麦克斯韦提出了光在本质上是一种电磁波———这就是所谓的光的电磁说。光电磁说的依据:赫兹在电磁说提出 20 多年后,用实验证实了电磁波的存在,测得电磁波的传播速度确实等于光速,并测出其波长与频率,并且证明了电磁波也能产生反射、折射、衍射、干涉、偏振等现象。用实验证实了光的电磁说的正确性。光电磁说的意义:揭示了光的电磁本性,光是一定频率范围内的电磁波;把光现象和电磁学统一起来,说明光与电和磁存在联系。说明了光能在真空中传播的原因:电磁场本身就是物质,不需要别的介质来传递。⑵电磁波谱:按波长由大到小的顺序排列为:无线电波、红外线、可见光(七色)、紫外线、X 射级、γ 射线,除可见光外,相5邻波段间都有重叠。各种电磁波产生的基理、性质差别、用途。电磁波种类 无线电波红外线可见光紫外线X 射线γ 射线频率(Hz)104~3×10121012 ~ 3.9 × 3.9×1014~7.5 7.5 × 1014 ~ 5 3 × 1016 ~ 3 × 3×1019 以上1014×1014×10161020真空中波长 (m) 组成频率波观察方法各种电磁波 的产生机理特性用途3×1014~10—4 3×104~7.7× 7.7 × 10 — 7 ~ 4 4×10—7~6×10—7×10—710—9波长:大小 波动性:明显不明显频率:小大 粒子性:不明显明显无线电技术LC 电 路 中 自 由电子的的振 荡 波动性强利用热效应 激发荧光 利用贯穿本领 照相底片感光(化学效应) 原子的外层电子受到激发热效应引起视觉化学作用、荧 光效应、杀菌通讯,广播, 导航加热烘干、遥 照明,照相, 测遥感,医疗, 加热 导向等日光灯,黑光 灯手术室杀菌 消毒,治疗皮 肤病等10—8~10—12原子的内层电 子受到激发 贯穿作用强 检查探测,透 视,治疗等10—11 以下核技术 原子核受到激 发 贯穿本领最强 探测,治疗等①从无线电波到γ 射线,都是本质上相同的电磁波,它们的行服从同的波动规律。②由于频率和波长不同,又表现出不同的特性:波长大(频率小)干涉、衍射明显,波动性强。现在能在晶体上观察到γ 射线的衍射图样了。③除了可同光外,上述相邻的电磁波的频率并不绝对分开,但频率、波长的排列有规律。(3)红外线、紫外线、X 射线的性质及应用。种类产生主要性质应用举例红外线 一切物体都能发出热效应遥感、遥控、加热紫外线 一切高温物体能发出 X 射线 阴极射线射到固体表面化学效应 穿透能力强荧光、杀菌、合成 VD2 人体透视、金属探伤⑷实验证明:物体辐射出的电磁波中辐射最强的波长λ m 和物体温度 T 之间满足关系λ m? T = b(b 为常数)。 可见高温物体辐射出的电磁波频率较高。在宇宙学中,可以根据接收到的恒星发出的光的频率,分析其表面温度。⑸可见光:频率范围是 3.9-7.5×1014Hz,波长范围是 400-770nm。五、光谱和光谱分析(可用光谱管和分光镜观察)由色散形成的,按频率的顺序排列而成的彩色光带叫做光谱 1.发射光谱 (1)连续光谱:包含一切波长的光,由炽热的固体、液体及高压气体发光产生;(2)明线光谱:又叫原子光谱,只含原子的特征谱线.由稀薄气体或金属蒸气发光产生。 2.吸收光谱:连续光通过某一物质被吸收一部分光后形成的光谱,能反映出原子的特征谱线. 每种元素都有自己的特征谱线,根据不同的特征谱线可确定物质的化学组成,光谱分析既可用明线光谱,也可用 吸收光谱. 六..激光的主要特点及应用 (1)激光是人工产生的相干光,可应用于光纤通信。(普通光源发出的光是混合光,激光频率单一,相干性能好非 常好,颜色特别纯。) (2)平行度和方向性非常好。(应用于激光测距雷达,可精确测距(s=c·t/2)、测速、目标跟踪、激光光盘、激光致热 切割、激光核骤变等。) (3)亮度高、能量大,应用于切割各种物质、打孔和焊接金属。医学上用激光作“光刀”来做外科手术。6 http://bbs.wps.cn/attachment.php?aid=16047601 有详基肆世搏肢雹敏解的。 错在E不等于1/2mv^2 狭义并行相对论中E=mc^2(c为光团蔽纯速) E=mc² 所以 mc²=hvm=hv/c²塌咐 p=mc=hv/c又因为c/v=λ 所以p=h/λ 差不多都忘了 回答只供参考下 那个Ek是光电子的射出动能吧 hv是亩漏雀具有最大能量(v是频率) W0是溢出功迅早(即光电子完全脱离原子所消耗的能量) 总体上可以理解为 具有hv能量的光电子在脱离原子时消耗了W0的能量 还剩下hv-W0 而剩下这些能量就是动能 即Ek 希望这个能帮到你吧 查看搜闷原帖>>高中物理光学部分
高二物理光学公式
光压公式高中